

iCROSS: Towards a Scalable Infrastructure for
Cross-Domain Context Management
Bin Guo1, Daqing Zhang1, 2, Lin Sun2, Zhiwen Yu1, Xingshe Zhou1

1 Northwestern Polytechnical University, P.R. China
2 Institut TELECOM SudParis, France

{guob, zhiwenyu, zhouxs}@nwpu.edu.cn, {daqing.zhang, lin.sun}@it-sudparis.eu

Abstract

With the development of pervasive computing techniques, the world will be filled

with interconnected context-aware domains (e.g., homes, offices, hospitals, etc.). While

previous studies focused solely on the management of contexts produced in a single

domain, in this paper we discuss the challenges to be addressed for cross-domain

context management. By analyzing the requirements from several scenarios, we identity

two different context producer-consumer patterns in multi-domain environments.

Furthermore, to deal with the mobile entity problem raised in cross-domain context

sharing, a transparent query mechanism that enables applications to obtain context

information about mobile entities from remote domains is proposed. Two prototype

applications - smart home and community services in a smart campus - have been

developed to demonstrate the key features and usefulness of cross-domain context

management. Initial experiments have also been conducted to evaluate the performance

of our system.

Keywords: Pervasive Computing, Cross-domain Context Management, Context

Awareness, Query Routing Mechanism

1. Introduction
Context-aware computing refers to the idea that applications can adapt their behaviors

according to the contexts collected (e.g., location of use, the collection of nearby people,

accessible devices, work schedules, software usage) in which they are run. The contexts

can be sensed or extracted by various physical/software sensors in cyber-physical

spaces. In a general context-aware system, the context manager often acts as

middleware between context-aware applications (or context consumers) and sensors (or

context producers), collecting contexts from various context producers and providing

query mechanisms for applications to selectively access the contexts they need.

In recent years, different context managers have been developed to meet the

requirements of specific domains, such as homes [1, 2], offices [3], hospitals [4],

supermarkets [5], classrooms [6] and vehicles [7]. These context managers are designed

to store contexts produced in a smart domain (e.g., a smart home) and deliver them to

applications running locally (e.g., an eldercare app). With the development and

prevalence of pervasive computing techniques, we can imagine that the real world will

be filled with various smart domains in the near future. Human beings are mobile in

nature. Each day, they travel across different smart domains and leave their digital

footprints (or contexts) in them [8]. One significant problem raised here is how the

contexts should be managed when the pervasive environment is extended from single to

multiple domains. For example, how should the contexts be stored and queried? Should

they be controlled in a centralized manner, or in a self-organized manner? Due to

privacy and proprietary issues, it is not practical to assume the usage of a cloud-like

server that gathers and manages all the contexts generated from different administrative

domains. It is more practical to store and control the contexts generated from a

particular domain by the local context manager, which we call the “Local-Production,

Local-Management” (LPLM) principle. Under this principle, each smart domain is

equipped with its own context manager to store and control the access of the contexts it

produces. The following scenario from the EU Feel@Home project [9] gives an

example of applying this principle.

The Smart Home Scenario. The Dupont family is composed of the father, David,

the mother, Barbara, and their son, Tony. It is 10:00 AM, David is having a meeting in a

business partner’s office (called Office-P domain), and Barbara is walking the dog in a

park (i.e., in the mobile domain). At this moment, the postman arrives at their house,

bringing a parcel from Barbara's parents living in Lyon. Having detected that the

doorbell is ringing, the home domain context manager (home DCM) sends this context

to its subscriber − Smart-Monitor application (SMA). SMA queries the home DCM and

learns that nobody is at home. After querying David's current status from remote DCMs

(including the one he is located in – Office-P, and others that he registers, e.g., his own

office – Office-D), the home server learns that David is in a meeting (acquired from

Office-D DCM) and Barbara might be available (acquired from the outdoor/mobile

DCM) to answer the doorbell. It then sends a picture of the postman taken by the video

intercom (installed at the entrance) to Barbara. She recognizes the postman and agrees

to “answer” the doorbell. A connection between Barbara's mobile phone and the video

intercom is thus built. The postman talks with Barbara directly and they make a new

time for redelivering the parcel.

The above scenario introduces an interesting issue to be addressed for context

management in multi-domain environments: due to the mobility of some entities (e.g.,

people, devices), which domain context manager (DCM) should an application query if

it wants to obtain the context information on these mobile entities from remote

domains? In the simplest case, we can obtain a person’s context from the DCM that the

user is currently in (e.g., acquiring Barbara’s ‘walking’ activity from the mobile DCM),

but the problem is how to determine in which domain the person locates. Things

become more complicated sometimes because the target context may not be simply

found from the user-situated domain. For instance, in the above scenario, David is

within a foreign domain (e.g., Office-P) that does not provide activity tracking service

for visitors (or unregistered users). His activity information, however, can be obtained

from the agenda stored in the DCM of his office (Office-D). In short, it is often difficult

for an application to specify which DCM to query, due to the “mobility” of entities (we

call it the mobile entity problem) in multi-domain pervasive environments. Effective

routing methods that can direct remote context queries to the right DCM are thus

crucial.

A number of systems have been developed to manage contexts in pervasive

environments. However, most of them are constrained to a single smart domain. Very

few of them consider the storage and acquisition of contextual information generated

from remote domains. Previous studies provide “peer-to-peer routing” and “home-

broker based redirecting” solutions, but they either do not consider the mobile entity

problem or only partially solve the routing issue (see Section 2). This paper focuses on

the interactions between smart domains and presents a global context management

system called iCROSS to address the above issues. The main contribution is that it

provides a unified method to manage the DCM entry point update of mobile entities

(called “mobile entity registration”) and a transparent routing mechanism that enables

applications to obtain contextual information about mobile entities from the right

domain. We have developed several prototype applications to demonstrate the key

features and validate the performance of iCROSS.

The rest of this paper is organized as follows. Section 2 reviews related work on

context management in smart domains. In Section 3, we describe the Feel@Home

project and analyze its requirements on cross-domain context interaction. Based on the

requirements, we present the iCROSS system infrastructure in Section 4. In Section 5,

we explain the cross-domain mobile entity registration and context query mechanism

used in our system. The implementation of two prototype applications and an initial

evaluation of our system are presented in Section 6. We conclude our paper in Section 7.

2. Related Work
Over the last decade, many researchers have been working on context management

infrastructure for context-aware systems. The pioneering work of Context Toolkit

presents an object-oriented architecture for rapid prototyping of context-aware

applications [10]. In the CoBrA project [11], Chen et al. propose an agent-oriented

infrastructure for semantic context representation, knowledge sharing and privacy

control. Wang et al.’s Semantic Space system exploits the Semantic Web technologies

to support explicit representation, expressive querying and flexible reasoning of

contexts in smart spaces [1]. One common feature of these studies is that they are all

designed to store and manage the contexts produced in a smart domain (e.g., a smart

home). To facilitate the access of contexts required by local applications, they employ

informal or formal methods to represent the contexts generated by heterogeneous

devices in the domain and provide a unified interface for context query. However, the

problem shared by them is that their operations are constrained to collecting and

accessing contexts from a single domain. As a result, applications cannot obtain context

information from remote context managers. A survey on context management is

recently reported in [12], which reviews and discusses a set of techniques and issues

relevant to context modeling, reasoning, storage, and query. It, however, does not cover

the context management problem in multi-domain environments. In their work [13],

Wibisono et al. have proposed a Dempster-Shafer based approach to manage the

contexts in Mobile Ad Hoc Network (MANET) environments, where each mobile

phone has a context manager, and can retrieve contexts from other mobile phones. Our

work is founded on a different assumption: we adopt the “LPLM” principle leveraged

by CoBrA[11] and Semantic Space [1], where the contexts produced in one domain are

collected and maintained by the centralized domain context server running in that

domain. Context inconsistency is another important issue as a context manager, and

distinct methods have been proposed to deal with it [14, 15]. In this paper we focus on

the cross-domain context query issue. The context inconsistency problem in multi-

domain environments will be formalized and tackled in our future work.

Very few studies have been done on cross-domain context management. In their

work [16], Gu et al. propose a peer-to-peer mechanism that enables context-aware

applications to retrieve foreign context information from remote smart spaces. The

difference with our work is that they focus on context source discovery in remote

context mangers and do not provide a solution to mobile entity problem. Similar to our

system, the Vade system [17] developed by Jose et al. also relies on telecom operators to

track a user’s location and use this information to determine whether the mobile device

is in a particular foreign domain. The main contribution of their work is that it allows

local applications running in the foreign domain to obtain contexts about a visitor and,

on the other hand, enables applications running on the visitor’s mobile phone to retrieve

public contexts shared by that domain. Nevertheless, it does not provide a solution that

allows other domains to obtain context about a mobile entity.

The CMF system developed by Hesselman et al [18] comes closer to our work,

which also deals with the mobile entity problem. In their approach, each user belongs to

a “home” domain (e.g., his company) and all other domains are called “foreign”

domains. When a user enters a foreign domain, his mobile phone detects this and

triggers a connection between his home domain and the foreign domain. The

applications running at the home domain can then obtain information from the foreign

domain. A similar approach was used by Roussaki et al. in [19]. There are several

drawbacks of the solution they propose. First, the assumption is not reasonable, because

a user may have several “home” or “registered” domains, such as his home or office.

According to the proposed solution, not all registered domains can obtain recent

contextual information about the user from the remote domain he is in. Second, it does

not consider the distributed storage nature of the contexts for mobile entities. Beyond

the home domain and the foreign domain the user is currently in, some information

about the user may be stored in another registered domain of his, which cannot be

routed to by their solution. In contrast with CMF, our system provides a global routing

mechanism that supports all authorized applications, independently of where they are

located. It can, on the one hand, fetch the most recent contextual information about a

mobile entity from his newest registered entry-point, and on the other hand, obtain the

context from several of the user’s registered domains when the entry-point-based query

fails.

3. Requirements from the Feel@Home Project
The Feel@Home project, coordinated by France Telecom and Telefonica, addresses

mobile social connection, resource sharing (including contexts and multimedia

resources), and remote control in multi-domain pervasive environments. Contexts

generated in different Feel@Home enabled domains/environments should be managed

by their local context managers (i.e., the LPLM principle described in the introduction).

In the current stage, five different domains − home, office, business, classroom, and

mobile − are considered, and five context managers are built accordingly.

 The home DCM manages contexts generated within a home environment, such as

the status of a house, user location in a house (e.g., in the kitchen), human activity

in a house (e.g., cooking, watching TV).

 The office DCM manages contexts generated within an office environment, such as

personal (e.g., drinking coffee) and group activities (e.g., having a meeting), work

schedules.

 The business DCM manages contexts generated within a commercial space (e.g., a

hotel, a public entertainment place), such as user location and social activities (e.g.,

watching a movie).

 The classroom DCM manages contexts generated within a school classroom, such

as device status (e.g., the projector is working), room status (e.g., full or free seats

available).

 The mobile DCM manages contexts generated from outdoor environments (e.g., on

the street, in a car, on the train), which are collected by user-carried mobile phones

(equipped with sensors, such as accelerometers, GPS, Bluetooth), such as network

connection (e.g., 3G or Wi-Fi), user geo-location (e.g., in a park, near the

supermarket), user activities (e.g., walking, running, meeting friends). It also stores

the software usage contexts (e.g., video viewing, phone calls, SMS messaging,

plan-to-do list) on the mobile phone.

To illustrate better the motivation and identify the requirements for cross-domain

context management, beyond the “Smart Home” scenario presented in the introduction,

here we describe three other scenarios from the project.

The Community Scenario. Mobile social network builds an ever-connecting

community to facilitate the communication and interaction among peers. One day,

Barbara is doing shopping in the downtown area (DA). At around 5 pm, Barbara starts

planning for her dinner. She wants to invite some friends together for the dinner if they

are available in the vicinity. A request is then sent to the social activity agent (SAA)

running on her mobile phone, with the semantic description of this event:

<time-due, activity-type, location> = <6:30 pm, Dinner, NearMe>

Before the deadline of the planned event, SAA queries the status of Barbara’s

friends every ten minutes and sends an invitation once a match happens. Alice, a friend

of Barbara, becomes the first person invited. She enters DA to buy something in a

shopping mall after the request is posted 20 minutes. SAA detects this by querying

Alice’s mobile DCM (Alice’s mobile phone is equipped with GPS). More surprisingly,

Sally, who works in another city, becomes the second person being invited. She happens

to have a project meeting in a hotel of DA. Sally is a common friend of Barbara and

Alice, but she has not seen them for several years. Though Sally’s mobile phone is not

equipped with GPS, the hotel she situates reports her location information (through Wi-

Fi connection). From the business DCM of the hotel, SAA learns that Sally’s meeting

closes at 6:15 and sends an invitation after that time. Finally, the three have a good

dinner together in a restaurant of DA.

The Smart Campus Scenario. In university campuses, students often face the

problems of finding partners to do sports in a certain free time slot, searching if there

are free seats in a classroom, finding if someone can help him solve a technical issue,

etc. These problems can be solved in a sensor-enhanced smart campus (e.g., sensor-

equipped mobile phones, classrooms with WiFi/Bluetooth access points). For example,

if Tony has a problem about Java programming and he wants to find a friend to help

him, he can send a query to the smart campus agent (SCA) running on his mobile

phone. The SCA agent can retrieve the activity context of his friends from the relevant

DCMs (classroom DCMs, mobile DCMs, etc.) in the campus. Afterwards, he finds that

his friend Bob is studying in a classroom (queried from the classroom DCM) that is

near to him, he then heads for the classroom for help.

The Entertainment Recommendation Scenario. On Sunday, Tony wants to look

up what entertainment his friends are enjoying and plan to enjoy. He sends this request

to the recommendation agent (RA) running on his mobile phone. RA queries the most

recent and scheduled multimedia-related activities of his friends. Bob is watching the

“National Geographic Channel” at home. John is having dinner in a KFC (a business

domain), but his “want-to-enjoy” list kept in his mobile phone (the mobile DCM)

indicates that he wants to see a movie titled “Tomorrow” recently. Interestingly,

another friend of Tony, Tom, is watching the “Tomorrow” movie in a cinema (queried

from the business DCM). RA collects all the information and displays it on Tony’s

mobile phone. Tony learns that the “Tomorrow” movie might be funny and decides to

watch it the next day, maybe with John.

Based on all the four scenarios described, we identify two requirements for context-

aware application development in multi-domain pervasive environments.

(1) Two context producer-consumer patterns: There are generally two types of context

consumers in Feel@Home, indoor applications running in home/office/business domain

and mobile applications running on a mobile device in the mobile domain. When

considering the different possible locations of context producers and context consumers

within a multiple DCM environment, two context-aware application design patterns are

derived:

 Intra-domain context producer-consumer pattern: In this pattern, the application

running in a certain domain consumes the contexts produced by the same domain.

For example, in the “Smart Home” scenario, the Smart-Monitor application running

at home queries the home DCM to learn if anyone is at home.

 Cross-domain context producer-consumer pattern: In this pattern, contexts

produced in a domain can be consumed by applications of remote domains. For

example, in the “Smart Home” scenario, the Smart-Monitor application can retrieve

information from remote context managers (e.g., Office-D DCM, mobile DCM) to

determine which family member is available to “answer” the doorbell. In the

“Community” and “Smart Campus” scenario, applications can query the location or

status of Barbara or Tony’s friends from remote domains (e.g., mobile DCM,

classroom DCM, hotel DCM). The mobile agent collects multimedia-related

activities of Tony’s friends from other domains (e.g., friend-home DCM, KFC

DCM, mobile DCM) in the “Entertainment Recommendation” scenario.

(2) Remote context query mechanism: As described above, for the cross-domain context

producer-consumer pattern, an application running in a domain often needs to obtain

contexts from remote domains. In terms of the complexity of accessibility, we

categorize remote context queries into two types:

 Explicit query. For the contexts that are produced and maintained by a single

domain, such as lighting-level information of a room and ongoing group activity

information in an office, the application can specify where it can be obtained.

 Mobile entity query. For the contexts that may exist in several domains, the

application, in most cases, cannot specify where the context can be obtained. It

mainly happens when querying contexts about mobile entities (like a human),

because they roam among different domains and his context information is

maintained by distinct context managers. It should be noted that in Feel@Home, we

assume that a user can not only be served by his “registered domains” (e.g., his

home/office), but also, at least partially, by his friendly “guest or foreign domains”

(e.g., his friend’s home, his partner’s office, movie theatres, hotels). Since part of

the information about the person, such as location, is overlapping amongst these

domains, sometimes it is hard for a context consumer to specify where the most

recent information about the person can be obtained. For example, in the “Smart

Home” scenario, the Smart-Monitor application running at home has to check the

availability of the out-of-home family members. But given that a person like David

may be present in different environments, it is not possible for the application to

specify the target remote DCM to fetch his status context. Similarly, in the

“Entertainment Recommendation” scenario, a person may enjoy entertainments in

different domains (e.g., watching TV at home, seeing a movie trailer on his mobile

phone) within a day. One way to solve the mobile-entity problem is to broadcast the

query request to several possible target domains and compare the timestamp of

retrieved results. However, because the human often enters a foreign domain that is

unknown to applications (like ‘Office-P’ in the scenario), this solution can only

handle a few situations. Therefore, for a remote query where it is hard to specify the

target domain, one must provide a transparent mechanism that can route the query

to the right DCM.

4. The iCROSS System
Based on the requirements presented in the last section, we design the iCROSS context

management system, which supports both intra-domain and cross-domain context

producer-consumer patterns and builds a global routing scheme to facilitate remote

context query.

4.1. System Infrastructure

As illustrated in Fig. 1, the iCROSS infrastructure is broadly divided into three parts:

remote queries from applications, global administration server (GAS), and domain

context managers (DCMs).

Fig. 1: The iCROSS system infrastructure

(1) Remote queries from applications. It refers to applications that try to retrieve context

information from remote domains. Two different remote query types are identified

previously and they should provide different information in the query statement.

For an explicit query, the query statement should include four parameters,

Domain_ID (the domain of the target entity; managed by the GAS), Entity_ID (e.g., a

light; managed by the DCM), Context_Name (e.g., ‘Status’) and Requester Info (it may

be a domain id for an indoor application or a user id for a mobile application). An

example that queries the status of a light in a remote domain is shown in Table 1

(Example 1).

Table 1: Query statement

Parameter Example 1 Example 2 Example 3

Domain/User ID d00001 u00001 u00001

Entity ID light01 − notebook01

Context Name Status Activity Status

Requester Info u00001 d00001 d00002

For a mobile entity query, the query statement includes three or four parameters,

User_ID, Entity_ID (optional), Context_Name and Requester Info. In this kind of query,

the application does not have to specify an explicit domain to obtain the context,

instead, it only gives the id of a mobile entity. For example, when querying the context

information of a user, the query statement should provide User_ID; while when

querying the context about a user’s belongings, the query statement should include both

User_ID and Entity_ID (the id of the belonging). Two examples are given in Table 1,

where Example 2 queries the activity of a user, and Example 3 queries the status of a

user’s notebook (a belonging).

(2) Global Administration Server (GAS). GAS is a global routing service running in a

big service provider (like a telecommunication company) which redirects remote

queries from applications to the correct DCMs. It consists of the following four

components.

Context Entry Database (CED) is a global entry control database that manages two

tables. One is the access entry table (AET), which stores the entry point of the DCM

indexed by the entity id (id of a domain or a user). We give a sample of this in Table 2.

A user-id-indexed entry-point record indicates the current domain (registered or guest

domain) where the user resides. The user registration table (URT) stores the entry point

of all registered domains of a user.

Table 2: Access entry table (a sample)

Entity ID Entity Name Access Point

u00001 John 143.168.10.2/Access

u00002 John’s Mother 143.167.10.3/Access

u00003 Alice 143.165.11.5/Access

d00001 John’s Home 156.155.14.2/Access

d00002 John’s Office 150.2.17.60/Access

Context Entry Manager (CEM) is a component that deals with updated requests to

CED (updating AET table when the user enters a new domain). We specify the details

of this in Section 5.1.

Context Entry Engine (CEE) is the core module that routes remote queries to the

right DCM. For an explicit query request, CEE queries AET to retrieve the entry point

of the target DCM. For a mobile entity query request, the challenge is how to reduce

invalid DCM visits while maintain a reasonable query response time. A transparent

query routing mechanism is proposed, the details of which is presented in Section 5.2.

Access control (AC) is another important issue in cross-domain context exchange. In

the current design, there is global access control (GAC) on the GAS side and local

access control (LAC) on the domain side. Since the access/privacy control function is

outside of the scope of this paper, we will only discuss their common functions: GAC is

in charge of preventing unwanted visitors to a domain or to a user; LAC is used for

managing the user access to certain context information (e.g., which contexts, whose

contexts, in what situation, to what extent can they be accessed by authorized

consumers).

(3) Domain Context managers (DCM). DCM manages contexts produced in its domain

and deals with context consumption by local/remote applications. We describe its inner

architecture in the next subsection.

4.2. Domain Context Manager

The internal architecture of a domain context manager is shown in Fig. 2, which is

based on our previous work [1, 20]. It consists of the following components.

Context Wrappers transform the obtained raw data from various sensing sources

into context markups and sends it to the context aggregator. By gathering contexts from

context wrappers, the context aggregator will trigger JENA operations to store and infer

contexts. The JENA component is based on the Jena Semantic Web package

(http://jena.sourceforge.net/), which integrates several APIs to query and modify the

context knowledge base (CKB) at the programming level. Jena also provides an

inference engine (the context reasoner) that can infer high-level contexts from low-level

ones. We leverage the Semantic Web language – OWL [21] to represent contexts in

CKB.

Fig. 2: Context manager inner architecture

When a user enters a domain, the Registration Centre of this domain will interact

with this user to determine whether he/she is a guest or a registered user and if he/she

wants to be served by this domain (see details in Section 4.1).

The SOAP layer contains APIs for dealing with querying and modifying requests

from local or remote applications. The main task of it is to (1) analyze SOAP requests

and translate them into the formal format (e.g., Jena query language) that can be

processed by JENA, (2) encapsulate the query result from JENA and send it back to the

requester. With the support of the Publish Engine (based on a publish/subscribe engine

like ActiveMQ, refer to [22] for details), a subscription API that supports context

subscription by local applications is also provided (our system does not consider remote

subscription in the current stage).

As shown in Fig. 2, for local applications, they can directly send a query to the

Query API at the SOAP layer. The JENA component will execute the query and send

back the result to the application directly. This illustrates the working process of the

intra-domain context producer-consumer pattern. For the cross-domain context

exchange, the process is more complex, and we will describe it in the next section.

5. Cross-Domain Context Query
As presented in Section 3, there are two types of remote queries depending on whether

the context consumer can clearly specify the target context manager. We provide a

unified, global scheme to deal with this issue. The whole scheme consists of two main

parts: mobile entity registration and global context query mechanism.

5.1. Mobile Entity Registration

The mobile entity registration function supports user-entry-point updates when a user

moves from domain A to domain B. Upon entering domain B, the user will update his

entry point maintained by GAS from A to B. This function enables applications to

obtain the most recent context of the user.

We divide the registration process into three stages: (1) domain-entering event

detection, (2) authorization, and (3) entry point update. The whole process is controlled

by the user’s mobile phone, because it knows when it changes domains (the

Feel@Home project allows smooth network connection change, for instance, from 3G

to local Wi-Fi) and it is a trusted agent for the user as well as GAS (to avoid phishing

registration).

(1) In the domain-entering event detection stage, the user agent (UA) running on a

personal mobile phone discovers the domain registration service, and a session is

established between UA and the domain registration center (DRC). The UA sends a

request to the user and asks whether he/she would like to be served by this domain. The

session stops if the user chooses not to be served. Otherwise, the registration process

enters its next stage.

(2) In the authorization stage, UA will send the user’s id to DRC. DRC checks the

user id by querying CKB and determines whether the user is already a registered user or

just a guest user of this domain.

 If the user is a registered user. DRC updates the related information about the user

(e.g., his location) to CKB;

 If the user is a guest user. DRC generates a temporary account (using the user’s id)

for him (in CKB).

(3) In the entry point update stage, UA obtains the reference address (i.e., domain

ID) to the domain context manager from DRC and updates the user’s presence

information to GAS.

Through the above three stages, a mobile user can maintain his newest entry point

information in the GAS, which can be acquired by authorized remote consumers. When

the user leaves a space, there are two cases:

 If he is a registered user, some out-of-date contexts about the user (e.g., location,

activity) will be sent to “none”;

 If he is a guest user, his temporary account and all related contexts will be removed.

5.2. Global Context Query Mechanism

The global context query mechanism provides a unified way for cross-domain context

queries. Both explicit query and mobile entity query are supported by this mechanism.

As illustrated in Fig. 3, the query mechanism is implemented through the following four

stages.

Fig. 3: Global context query process

In the access control stage, the application sends a remote query to GAS. The global

access control (GAC) component of GAS examines whether the application (according

to the requester information) has the right to access the target domain (for explicit

queries) or to obtain the information about the target user (for mobile entity queries).

If the query request is allowed, we enter the access entry acquisition stage. In this

stage, the context entry engine (CEE) of GAS will query the access entry table for the

entry point of the target domain or user. If the target is a user, CEE will get the entry

point of the domain context manager where the user currently resides.

In the entry-point based query forwarding stage, CEE forwards the query to the

domain context manager according to the obtained entry point (we call it the entry

domain context manager or, simply, EDCM). The local access control (LAC)

component of DCM analyzes the query request and checks if it can be executed

according to user privacy settings in LAC (certain contexts cannot be obtained by

remote queries due to privacy considerations). If the query request is allowed, the query

is executed and the result sent back to CEE. CEE analyzes the result and performs the

following actions:

 If the result is not null, it sends the result to the application and the query session

stops;

 If the result is null and the query is a mobile entity query (i.e., the first parameter is

a user id), CEE will do further queries from the registered domains of the user. This

is because some contexts (such as his biomedical information) about the user may

not be stored by the domain he is currently in (e.g., his friend’s home), but are

stored in several registered domains of his (e.g., his home or company).

In the RDCM based query forwarding stage, CEE will search the user registration

table to retrieve other registered domains of the user, and forward the query

simultaneously to all the registered DCMs (RDCMs) for the target context. We call it

the “simultaneous-multicast”. Finally, CEE sends the query result to the query publisher

(e.g., an application or a service) and the query session stops.

The mechanism mentioned above provides a unified way for cross-domain context

query. This query process is transparent to mobile entity queries. Furthermore, the

mechanism proposed allows applications to fetch the most recent context information

about a mobile entity, as well as ensuring that we can find the correct storage place of

the context when it is not managed by the domain the user is currently in. It should be

noted that the term “context” used in this paper refers to “fresh” while not “historical”

information about an entity. Fresh information appears merely in one domain, while

historical context can be reserved in several different domains. For example, if we want

to query “what entertainments does Tony enjoy on Sunday” in the “Entertainment

Recommendation” scenario, we should multi-cast the query to the EDCM and all

RDCMs at the same time. That’s because multimedia-related activities can happen at

different domains (e.g., at home, on the mobile phone, in a cinema, and so on) within a

long period. In other words, if we make a small variation to the above algorithm,

combining the entry-point based and RDCM based query forwarding stage (to a unified

multi-cast forwarding stage), our algorithm can also deal with queries about historical

contexts.

6. Scenario Implementation and Evaluation
Having described the iCROSS infrastructure, in this section, we describe how it

supports cross-domain context query in our ongoing projects. Specifically, we present

the implementation of two scenarios described earlier in this paper. Initial experiments

have also been conducted to measure the performance of our system.

6.1. The Smart Home Prototype
To demonstrate the key features of iCROSS, we have implemented a prototype of the

Smart Home scenario (as described in the introduction). The design of it is shown in

Fig. 4. In the prototype, we have the GAS server and the home DCM located in our lab,

and three DCM clients (including two office DCMs and a mobile DCM) located at

students’ home. Each DCM maintains the contexts generated locally, and stores them in

the context knowledge base (CKB, see Section 4.2 for details). The CKB is developed

based on the SS-ONT ontology model we designed for smart environments [23]. In the

initial implementation, each CKB in a DCM consists of around 1000 OWL triples. For

the purpose of demo, some of the contexts identified in the scenario are pre-specified in

the context ontology, such as the doorbell ringing context, human activity context (e.g.,

Barbara is walking the dog, David is having a meeting), and so on. The whole working

process of the scenario is illustrated through a UML sequence diagram shown in Fig. 5.

Fig. 4: The design of the smart home scenario

When the postman arrives, the home DCM acquires this context through the ringing

doorbell. Since this context has been subscribed by the local Smart-Monitor application

(SMA), it will publish it to this application. By querying the home DCM and learns that

nobody is at home, SMA sends remote queries to GAS to check the current activity of

out-of-home family members, which can be used to learn who is available to answer the

doorbell. The first remote query is about David. CEE (see Section 4.1) at GAS firstly

forwards the query to the Office-P DCM according to the record from the entry point

table (David is currently there). However, because Office-P only provides location

context for remote queries, it does not provide any activity information about David.

CEE then redirects the query to the registered context managers of David, including his

office (Office-D) and the mobile DCM, and sends the final results to SMA. According

to the electric calendar information from David’s office, SMA finds out that he is

having a meeting in another place and thus is not available. Another remote query is

sent to fetch Barbara’s status. By the entry-point-based query, SMA learns that Barbara

is walking in a park and she is available to answer the doorbell. Finally, a text-based

communication channel is established between Barbara and the postman (in the current

stage, we did not build the video-based connection).

Fig. 5: The smart home scenario analysis

We have also conducted experiments to validate the performance of iCROSS based

on this prototype environment, as described later in Section 6.3.

6.2. Community Services in a Smart Campus
To benefit student life and social connection in university campuses, we have designed

and implemented the Smart Campus prototype (see Section 3). The prototype includes

several community services, one of which is Where2Study. The main purpose of

Where2Study is to find a suitable place to study by using Wi-Fi positioning and mobile

social networking techniques [24, 25]. It not only supports students to query the status

and locate their friends in the university campus (left of Fig. 6), but also shows the

status of the classrooms (full or free seats available), as shown in the right of Fig. 6. In

the prototype, each classroom can have a domain context manager, which manages the

contexts generated in it, such as number of free seats, the status of devices in it, people

in the classroom, and so on. For a student S1, the classroom he/she resides can be

viewed as a foreign or guest domain. It becomes the entry DCM (EDCM) of S1, which

is registered in the GAS of the smart campus. Another student S2, can remotely query

S1’s location if they are friends. At the same time, the status of the space S1 situated in

can also be obtained through cross-domain context query. In the prototype, the mobile

client user interface shown in Fig. 6 is developed on the Samsung i909 Android

platform.

Fig. 6: Screenshots of the Where2Study application

As shown above, the key feature of this application is the capability to browse the

status (e.g., location, activity) of human friends within different domains. This allows

users to reach out its individual space and be aware of their social ties in a campus-wide

environment, which will enhance social interaction and domain context sharing (e.g.,

the status of a classroom). In addition, when a user encounters a problem during study,

he or she could turn to their friends for discussion according to their location obtained

by remote queries.

6.3. Initial Evaluation
As a cross-domain query system, query latency is an important parameter to validate the

performance of iCROSS. We have conducted experiments to measure the basic “one-

round” query latency, i.e., the time latency between a query is transmitted from the GAS

to a DCM and the query result is sent back to the GAS. Technically speaking, it

comprises of the data-transmission time and local-context-query time, which is

measured by the following way.

 First, we measured the data-transmission (a query packet with the size of 100

Bytes) time from the client-domain node to the server node, and obtained the

average “one-way” data transmission time (0.1s) after fifty runs.

 Second, we tested the local-context-query time on a DCM (the context ontology

size is around 1000 OWL triples), and figured out the mean (0.3s) after fifty runs.

 The average one-round query latency is thus 0.5s (0.1s ∗ 2 + 0.3s).

As described in Section 5, the cross-domain query mechanism we proposed can be

viewed as a two-stage query routing method. The method first forwards an incoming

query Q to EDCM; if there is no matched query result, it transmits Q to all the

remaining RDCMs simultaneously. Therefore, our query mechanism is at most a “two-

round” query process. In other words, if Q can be resolved in the first stage/round, the

query time should be 0.5s; otherwise, it doubles to 1.0s. The number of query rounds,

however, is affected by the probability that the target DCM (where the target context is

kept) is the same as the entry DCM (EDCM). Assume the probability parameter is P, if

P is 80%, it means that the target DCM will choose from EDCM with 80% probability,

and will choose from all the other DCMs with 20% probability. We thus have the

expected value for the query time (Qtime) given by:

E[Qtime] = 0.5 ∗ P + (1 − P) ∗ 1.0 (1)

It can be transformed to:

E[Qtime] = 1 − 0.5 ∗ P (2)

Formula (2) reveals that Qtime decreases when P increases, and when P increases to

100%, we have the minimum Qtime − 0.5s. It is because that when P increases, there is

higher probability that the target context is accompanying the user (i.e., in the EDCM),

and thus decreases the time cost on the second-round routing (to RDCMs). It should

also be noted that the query time can be affected by the network condition and the size

of the ontology [20], however, we consider that a 1-2 seconds delay is tolerable by most

context-aware applications.

7. Conclusion
This paper reports our early effort on cross-domain context management. Two context

producer-consumer patterns, intra-domain and cross-domain, are identified and

supported by our proposed iCROSS context management infrastructure. Our system

further addresses the mobile entity related context acquisition problem, and provides a

global routing mechanism to support the effective acquisition of context information

about mobile entities from remote domains in a transparent manner. We have also built

two scenarios to demonstrate the features and test the performance of iCROSS.

Our work on cross-domain context management is ongoing. Future work includes

the integration of robust access/privacy control mechanisms and the combination of

advanced query processing algorithms leveraged by distributed systems. We will also

exploit the programming paradigm for context-aware app development in multi-domain

environments. A programming platform that facilitates user collaboration among

different smart domains has been reported in [23]. Context inconsistency and

uncertainty issues will evolve differently in multi-domain environments. As mentioned

in Section 2, it will become another direction of our future research.

References

[1] X.H. Wang, D.Q. Zhang, J.S. Dong, C.Y. Chin, S. Hettiarachchi. Semantic Space: An infrastructure for smart
spaces. IEEE Pervasive Computing, Vol. 3 No. 3, 2004, pp.32-39.

[2] B. Guo, R. Fujimura, D.Q. Zhang, M. Imai. Design-in-Play: Improving the Variability of Indoor Pervasive
Games. Multimedia Tools and Applications, Vol. 59 No. 1, 2012, pp. 259-277.

[3] N. Streitz. Smart Artefacts as Affordances for Awareness in Distributed Teams. The Disappearing Computer,
Springer, 2007, pp. 3-29.

[4] D. Sanchez, M. Tentori, J. Favela. Activity recognition for the smart hospital. IEEE Intelligent Systems, 23,
2008, pp. 50–57.

[5] Javier Bajo et al., SHOMAS: Intelligent guidance and suggestions in shopping centres. Applied Soft Computing,
Vol 9 No. 2, 2009, pp. 851-862.

[6] Y. Shi, W. Xie, G. Xu, R. Shi, E. Chen, Y. Mao, F. Liu. The Smart Classroom: Merging Technologies for
Seamless Tele-education. IEEE Pervasive Computing, 2003, pp. 47-55.

[7] Z. Wu, Q. Wu, H. Cheng, G. Pan, M. Zhao, J. Sun. ScudWare: A semantic and adaptive middleware platform
for smart vehicle space. IEEE Trans. on Intelligent Transportation Systems, Vol. 8 No.1, 2007, pp. 121-132.

[8] D.Q. Zhang, B. Guo, Z.W. Yu. Social and Community Intelligence. IEEE Computer, Vol. 44 No. 7, 2011, pp
22-29.

[9] The EU FeelAtHome Project, http://www.celtic-initiative.org/Projects/Celtic-projects/Call5/FEEL@HOME/
feelhome-default.asp.

[10] D. Salber, A.K. Dey, G.D. Abowd. The Context Toolkit: Aiding the development of context-enabled
applications. In: Proc. of CHI’99, 1999, pp. 434-441.

[11] H. Chen, T. Finin, A. Joshi, F. Perich, D. Chakraborty, L. Kagal. Intelligent agents meet the semantic web in
smart spaces. IEEE Internet Computing, Vol.19 No. 5, 2004, pp. 69–79.

[12] Bettinia, C., Brdiczkab, O., Henricksenc, K., Indulskad, J., Nicklase, D., Ranganathanf, A., Riboni, D.: A
survey of Context Modelling and Reasoning Techniques. Pervasive and Mobile Computing, Vol. 6 No.2, 2010,
pp. 161-180.

[13] W. Wibisono, S. Ling, A. Zaslavsky. Collaborative context management framework for mobile ad hoc network
environments, In: Proc of the 2010 ACM Symposium on Applied Computing (SAC-10), 2010, pp. 558-562.

[14] C. Chen, C. Ye, H. Jacobsen. Hybrid Context Inconsistency Resolution for Context-Aware Services. In: Proc.
9th IEEE Conf. on Pervasive Computing and Communications (PerCom 2011), 2011, pp. 10-19.

[15] V. Degeler, A. Lazovik. Interpretation of Inconsistencies via Context Consistency Diagrams. In: Proc. 9th IEEE
Conf. on Pervasive Computing and Communications (PerCom 2011), 2011.

[16] T. Gu, E. Tan, H. Keng Pung, D. Zhang. A Peer-to-Peer Architecture for Context Lookup, 2nd International
Conference on Mobile and Ubiquitous Systems (MobiQuitous’05), San Diego, California, 2005.

[17] R. José, F. Meneses, A. Moreira. Integrated Context Management for Multi-domain Pervasive Environments. In:
Prof. of the First International Workshop on Managing Context Information in Mobile and Pervasive
Environments, 2005.

[18] C. Hesselman et al. Controlled Disclosure of Context Information across Ubiquitous Computing Domains. In:
Proc. of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing,
2008, pp. 98-105.

[19] I. Roussaki, M. Strimpakou, C. Pils, N. Kalatzis, M. Neubauer, C. Hauser, M. Anagnostou. Privacy-Aware
Modelling and Distribution of Context Information in Pervasive Service Provision. IEEE International
Conference on Pervasive Services (ICPS2006), 2006, pp. 150-160.

[20] B. Guo, S. Satake, M. Imai. Lowering the barriers to participation in the development of human-artifact
interaction systems. International Journal of Semantic Computing (IJSC), Vol. 4 No. 2, 2008.

[21] Web Ontology Language, http://www.w3.org/2004/OWL/.
[22] ActiveMQ, http://activemq.apache.org/.
[23] B. Guo, D.Q. Zhang, M. Imai. Towards a Cooperative Programming Framework for Context-Aware

Applications. Personal and Ubiquitous Computing, Vol. 15 No. 3, 2010, pp. 221-233.
[24] Q. Yang, S.J. Pan, V. W. Zheng. Estimating location using Wi-Fi. IEEE Intelligent Systems, Vol. 23 No. 1,

2008, pp.8-13.
[25] Z. Yu, Y. Liang, B. Xu, Y. Yang, B. Guo. Towards a Smart Campus with Mobile Social Networking. The 2011

IEEE International Conference on Internet of Things (iThings 2011), Dalian, China, 2011.

	Abstract
	1. Introduction
	2. Related Work
	3. Requirements from the Feel@Home Project
	4. The iCROSS System
	4.1. System Infrastructure
	4.2. Domain Context Manager

	5. Cross-Domain Context Query
	5.1. Mobile Entity Registration
	5.2. Global Context Query Mechanism

	6. Scenario Implementation and Evaluation
	6.1. The Smart Home Prototype
	6.2. Community Services in a Smart Campus
	6.3. Initial Evaluation

	7. Conclusion
	References

