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Abstract—With the surge of varied crowd sensing systems, 

active user participation becomes a crucial factor that determines 

whether a crowd sensing system can provide good service quality. 

To encourage user participation in mobile crowd sensing, we 

propose a novel incentive mechanism called CSII—a Cross-Space, 

multi-Interaction-based Incentive mechanism. CSII can estimate 

the value of a task based on the sensing context and historical 

data. It then has multiple interactions with both the task 

requester and the candidate contributors to provide a suggestion 

on budget and select suitable people to form the worker group. 

Finally, the requester pays the workers’ reward that they 

deserved by reverse auction based on their reputation and bids. 

Both online and offline data are leveraged to estimate task value 

and user quality for a particular task. Experiments show that the 

incentive mechanism can achieve good performance in terms of  

acceptance ratio, overpayment ratio, user utility, and so on. 

Keywords—Incentive Mechanism; Cross-Space; Multi-

Interaction; Mobile Crowd Sensing; Smartphones 

I.  INTRODUCTION 

Mobile Crowd Sensing (MCS) systems rely on a large 
amount of participants with smartphones to sense data of 
interest and share it through backend servers [1]. The 
collaboration of numerous participants on task assignment and 
data collection makes a great difference in accomplishing 
large-scale sensing tasks, such as traffic monitoring [2, 3] and 
environment monitoring [4, 5]. In MCS systems, whether 
there are adequate users to participate has critical impact on 
the workability and quality of such systems. However, there 
are several problems that may hinder user participation. First, 
the usage of smartphone sensors brings human concern on 
privacy leakage. Second, the participants need to transmit the 
sensed data to a server, which can raise cost on network traffic. 
Finally, the consumption of computation/energy resources 
would also reduce user willingness on participation. To 
overcome these problems, incentive mechanisms are crucial to 
simulate user participation in MCS systems. 

A lot of work has been done on the incentive mechanisms 
[6-14] for MCS systems. However, they do not fully consider 
the characteristics of MCS. First, MCS refers to human 
behaviors in both cyber and physical spaces [1], while existing 
works mainly focus on the data and information from the 
physical world. As presented in [15], to better understand and 
provide support to human behaviors, we should leverage 
cross-space, multi-sourced data. For example, the spatio-

temporal characters of human can be better depicted when 
using heterogeneous data sources. Second, existing work pays 
little attention to the interaction among task providers, the 
backend sever, and participants, which may impact the quality 
of MCS task completion. For instance, without prior 
knowledge about the dynamics of an area, it is often difficult 
for the task requester to raise a well-planned budget to execute 
a MCS task within that area. This, however, can be enhanced 
by the interaction between the task provider and the backend 
server (the server has rich history information and aggregated 
knowledge about the city). 

Given the above issues, we propose a novel MCS incentive 

mechanism called CSII —  a Cross-Space multi-Interaction-

based dynamic Incentive mechanism. The main contributions 
of our work are summarized below: 

 It leverages cross-space data (online and offline) to 
better characterize the sensing tasks and stakeholders: 
to estimate the value of a task (for budget suggestion), 
and to select suitable participants to perform the 
sensing task. 

 Interactions among the stakeholders in MCS systems 
are considered to improve the quality of sensed data. 
The interactions are integrated in different task 
performing stages, which facilitates dynamic 
budgeting/pricing and improves the quality of user 
contributed data. 

Experiments over a combination of online crawled data 
and task simulation indicate that the CSII mechanism is 
effective to motivate user participation and can provide high 
quality of sensed data.  

II. RELATED  WORK 

Researches on MCS incentive mechanisms can be broadly 
categorized into two modes: online and offline. 

  In the online incentive mode, participants arrive one by 
one in a random order and the platform has to decide whether a 
task should be assigned to a participant upon her arrival based 
solely on the information of previous participants who arrive 
earlier than the current one. In work [6-9] a certain number of 
participants who arrival at the beginning are rejected to 
perform the sensing task and their informations are used as 
samples to learn a threshold, which acts as a criterion on task 
assigment to other participants arriving later. However, this 
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solution cannot guarantee the same winning chance for 
everybody, because the first batch of participants who are 
selected to train the threshold have no chance to win no matter 
how low their bids are. In other words, the participants arriving 
early have no rewards to report their bids, which may delay the 
completion time of the task and even result in task starvation[7]. 

  In the offline incentive mode, the backend server has the 
whole information about the data contributors, including bids, 
sensing costs, and so on. [10-14] are typical examples, where 
well-suited participants are selected for data collection and the 
reverse auction method is used. All these studies assumed a 
static budget for any published task, the dynamics of tasks in 
terms of spatio-temporal contexts are not considered. Though 
[13, 14] proposed an incentive mechanism that selects a 
representative subset of the participants according to their 
location with a constrainted budget, it does not allow task 
difficulity evaluation and dynamic budgeting. 

  Different from existing incentive mechanisms, to make 
full use of the spatio-temporal contexts and crowd interactions, 
we propose a cross-space, multi-interaction-based dynamic 
incentive mechanism (CSII) for MCS systems. The incentive 
mechanism will be optimized with the interactions among task 
providers, participants, and the platform or server. Cross-space 
data mining and sensing task value estimation will be used for 
task evaluation and participant selection. 

III. SYSTEM ARCHITECTURE AND ANALYSIS 

To motivate people participating in MCS systems, two 
contributions are made in the CSII mechanism: interactions 
among the entities with spatio-temporal contexts in MCS 
systems and cross-sapce data for characterizing the sensing 
tasks and stakeholders. We present the architecture as well as 
the main characters of CSII in detail below. 

A. The CSII Architecture  

In the CSII mechanism, a sensing task is characterized by a 
quadruple T=<m,  o, s, d>, where m is the requester‘s expected 
number of workers to perform the task; For the convenience of 
task publishment, we devide a district (e.g., a city in physical 
space) to a grid, and each cell within the grid is called a square 
region in our study. In the task T, o is a square region where 
data shoule be collected; s is the start time to perform the task; 
d is the deadline, before which the sensed data must be 
submitted. Here we define that the square o is a continuous 
region. The time during the start time and the deadline is called 
valid period for a particular sensing task. We define that the 
sensing task refered in our study is atomic [14], and complex 
tasks can be considered as combinations of atomic tasks. For 
example, a complex task that requires to collect data in several 
discontinuous square regions can be devided into atomic tasks 
of each square region. 

Three interaction entities are included in the CSII 
mechanism to perform a MCS task: requesters or task 
publishers, the task management platform (i.e., the backend 
server, ‗platform‘ in short), and workers. A requester is the one 
who publishes sensing tasks on the task management platform. 
Workers are the ones who perform sensing tasks with incentive 
mechanisms. The task management platform is responsible for 

worker selection and bargain/payment mediation among the 
requester and workers. Four stages are involved to motivate 
user participation in MCS systems: task publishment, task 
assignment, winner selection, and payment mediation. The 
architecture of the CSII mechanism is illustrated in Fig. 1, 
which contains multiple interactions among the three entities 
(explained in the next subsection) and the usage of cross-space 
(online/offline) data. The working procedure and the 
collaboration among different modules of CSII are presented 
below. 

A requester firstly publishes a sensing task on the platform. 
Before assigning the task to the potential workers, the platform 
estimates the value of the sensing task based on the LBSN 
(Location-based Social Network, e.g., Foursquare and Jiepang) 
online data and suggests a budget to the requester. In the 
interaction of this stage, the requester can adjust his budget 
based on the suggested task value. Afterwards, the platform 
will select workers to perform the task. An important thing to 
be considered is the matching between the requested sensing 
context and user behavior patterns, i.e., to estimate whether a 
user is likely to meet the requested sensing context. In the 
current study, we mainly consider about the spatio-temporal 
behavior pattern of users, which is learned from LBSN data. 
The workers then decide whether to accept the task assigned to 
them. Afterwards, the selected workers will perform the task 
and send their claimed bid price to the platform. The platform 
selects the winner by reverse auction. In order to reduce the 
cost on data transmission, only the winner submits the sensed 
data to the requester. To enhance the willingness of user 
participation, both the winner and losers are paid based on an 
improved payment stragety. 

 

Fig.1. The architecture of the CSII mechanism 

B. Interactions in the CSII Mechanism 

The interactions among the three entities happening at 
different stages are depicted below.  

The interaction between the requester and the platform in 
the stage of task publishment is shown in Fig. 2(a). In this 
round of interaction, the requester firstly submits a sensing task 
description to the platform. The platform estimates its value 
and budget and then sends back to the requester. Based on the 
suggested task evaluation infomation, the requester adjusts the 
number of participants needed. 



The interaction between workers and the platform in the 
stage of task assignment is shown in Fig. 2(b). In this round of 
interaction, the platform firstly selects workers suitable for the 
task based on spatio-temporal contexts, and then assigns the 
task to them. A selected worker can decide whether the task 
should be accepted. The platform will find additional workers 
if there are workers who refuse to act, and this process stops 
when the given number of needed participants is met or there is 
no one to be evaluated.  

The interaction between workers and the platform in the 
stage of winner selection is shown in Fig. 2(c). In this round of 
interaction, the workers submit their claimed bid prices to the 
platform. The platform finds the winner by considering both 
the bid price and user-reputation. After winner selection, the 
platform notifies the result to all the workers. 

The interaction between the requester and workers in the 
stage of payment is shown in Fig. 2(d). In this round of 
interaction, the requester scores the data contributed by the 
winner. The winner‘s reputation is updated based on the score. 
At last, the requester pays the winner and losers respectively.  

                      

(a) Task publishment                              (b) Task assignment 

              

(c) Winner selection                                (d) Payment mediation 

Fig.2. The multiple interactions among the three entities in the stages 

C. The Usage of Cross-Space Data 

The CSII is on the whole a cross-space collaboration 
system which uses a combination of physical space infomation 
and cyber space knowledge for MCS task management and 
human incentiving.  

In particular, at least the task publishment stage and the 
task assignment stage benefit from the usage of cross-space 
data. In the stage of task publishment, the platform estimates 
the task value based on the community behavior information 
(learned from the check-ins from online LBSN) data and the 
physical elements of a MCS task (where to sense, what time 
period to act) offered by the requester. In the stage of task 
assignment, the platform estimates the performance of workers 
based on the individual behavior info (according to her LBSN 
check-ins) and the physical task specification. As is shown in 

Fig.1, the task management platform acts as mediator for cross-
space data collection and fusion. 

IV. THE DESIGN AND IMPLEMENTATION OF CSII 

As presented in section III, CSII consists of four stages. In 
this section we present the design and implementation of the 
four stages. 

A. Task Publishment 

 This module provides the requester and workers objective 
knowledge about the sensing task‘s value, which acts as a 
metric for the suggested budget and worker‘s claimed bid price. 
The value of the task is evaluated by addressing several revlant 
factors, which are parameterized as square-hot and time-hot. 
Square-hot denotes the popularity of a square region and time-
hot denotes the popularity of a sensing period. In this paper, we 
define that when a square region and a sensing period is 
popular, the task within the square region and the sensing 
period is easy to be executed, which implies a low task value. 
The calculation methods of square-hot and time-hot are 
presented as follows.  

The square-hot of square region o is symbolized as H(o), 
which is calculated as (1). H(o) is measured by the number of 
visitors and check-in frequency. In (1), VTu,j denotes the 
number of visit times at location j of worker u; if worker u has 
visited the square k, the value of VUu,k is 1, otherwise it is 0. U 
is the set of the whole workers in the CSII mechanism; Γ is the 
set of locations visited by the workers in the set U; K is the set 
of square regions covered by the locations in set Γ; AR is the 
dimension of the square region o. 
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The square-hot of the sensing task is symbolized as FC, 
which is calculated as (2). FC denotes the visit frequency at 
square o of all workers in set U in the valid period of the task. 
Since the check-in time is flexible, we divide one day into 24 
time slots, with each slot being one hour. The check-in time 
will be represented by time slot 1 to time slot 24, and in (2) we 
have T={1, 2 , 3 … 23, 24}. Hence, according to the start-time 
s and the deadline d we can get time-slot coverage set C for the 

sensing task, { },1 24,( ) 11 2 (d - s)C c ,c c s d s     .  

, ,

,

, ,

, ,

u t j

u U j o

C

t C u k j

u U k T j o

VR

F
VR

 



  







          

The sensing task is valued with square-hot H(o) and time-
hot FC using (3). AS is the average square-hot of the total 
squares in set K, and AT is the average time-hot of the total 
time slots in set T. We define task value-benchmark to be ‗1‘ 
when the square-hot is AS and the time-hot is AT, respectively. 



Task value-benchmark is a unit value in sensing task 
evaluation module. 
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As depicted previously, the platform estimates sensing task 
value to make an objective budget suggestion to the requester. 
The suggested budget is calculated using (4), where (α*v) is the 
task compensation paid to the losers in reverse auction 
(explained in subsection D). In the current stage, the platform 
has no knowledge about the bid prices claimed by the workers. 
Hence, we calculate the budget with existing information, e.g., 
the task value and the number of workers needed. We assume 
that the payment to the winner is close to the task value. 
Therefore, the suggested budget is calculated as the sum of the 
payment to the whole workers who perform the sensing task. 
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B. Task Assignment 

In the task publishment stage, the requester specifies the 
expected number of workers to perform the task. The problem 
is how to choose suitable people to form the worker group 
from the human community. It is fulfilled by the worker 
evaluation module of the CSII mechanism. It assesses whether 
a worker is appropriate for performing a sensing task according 
to the worker‘s check-in history (location and time) and 
reputation. 

The spatio-temporal factor of worker u is denoted as Gu, 
which is calculated using (5). Gu is measured by the number of 
visit times at square region o during the task‘s valid period of 
worker u. Workers who visite the sensing square region during 
the valid period of the task are added into set S, and it is empty 

initially. If worker u satisfies: _u l o and _s u t d  , he is 

added to set S:  : _ , _S S u u l o s u t d     . The parameter 

u_l is the visit location of worker u and the parameter u_t is the 
corresponding time. In (5), wtu is the number of visit times of 
worker u in set S defined in the previous subsection, and 

(0,1)uG  .  
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The reputation factor of worker u is symbolized as Ru, 
which is obtained from the database on the platform. Ru is a 
reflection of the quality about the historical sensed data that 
worker u submitted to the platform. We assume that the higher 
a worker‘s reputation is, the higher quality her collected data is.  

In the payment mediation stage below, the requester 
evaluates the winner‘s work with score e, based on which the 
platform updates the reputation for winner u using (6). The 
score ranges from x to y ( y x ), and the initial reputation 

value is 0.5. We assume that the number of winning times in 
the reverse auction in history for winner u is r and the 
corresponding reputation is Ru(r).  
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The candidates in set S are evaluated using (7), where the 
value of Vu reflects the suitability for worker u to perform the 
sensing task. We can obtain that when a worker u holds a high 
value of Vu, the match of the spatio-temporal contexts between 
she and the task is high, as well as her reputation. 

*u u uV G R                                                                   

We limit the maximum number of tasks that one worker 
can accept as m_t. The worker whose number of accepted 
sensing tasks is smaller than m_t and also has checked in at the 
square o in the valid period will be selected to be evaluated.  

The purpose of worker evaluation is to choose a set of 
suitable workers W to perform a sensing task as sketched in 
Algorithm 1. The set W is empty initially. The platform sorts 
the workers in set S in descending order according to the value 
of Vu and assigns the task to the top one. If the top worker u 
accepts the sensing task and the number of tasks occupied to 
her is smaller than m_t currently, the platform adds her into the 

set W: { }W W u  , and assign task to her. We specify that a 

worker cannot repeat to accept the same task. The above 
process is iterated until the number of workers in set W reaches 
the expected number m. 

Algorithm 1: Task assignment 

Input: A task quadruple T=<m,o,s,d>, set S; 

1: W   ; 

2: for all u S do 

3:      Evaluate the worker u to get Vu; 

4: end for 

5: Sort Vu for all u S  in descending order and this list is 

denoted by Ψ; 

6: ζ denotes the head of Ψ; 

7: While the size of W is smaller than m do 

8:         Push task to ζ ; 

9:         If ζ accept the task then 

10:              W = W + {ζ}; 

11:              Assign the sensing task to ζ ; 

12:       end if 

13:        Remove ζ from the list Ψ; 

15:        ζ denotes the head of the new list Ψ; 

14: end while 

// The workers in W perform the sensing task 

 

C. Winner Selection 

When selecting the winner, we take the quality of the 
sensed data into consideration and assume that reputation can 
directly reflect the sensed data‘s quality. Hence, two types of 
bid prices are used: one is the actual bid price and the other is 
the competition bid price [12]. The actual bid price bu is 



claimed by worker u and the competition bid price wu is used to 
select the winner. The competition bid price is defined as (8), 
where the worker who holds low actual bid price and high 
reputation will have a higher opportunity to win in the reverse 
auction. As described in Algorithm 2, the platform sorts the 
workers in set W in nondecreasing order and selects the top 
one to be the winner. Then the requester evaluates the 
winner‘s work and the platform updates the winner‘s 
reputation based on the evaluation as described in previous 
subsection. 

(1 )u u uw b R                                    

Algorithm 2: Winner selection 

Input: Set W; 

//Get competition bid 

1: for all u W  do 

2:       Submit actual bid bu; 

3:       Obtain the reputation Ru of u; 

4:        wu  = bu  + ( 1 –  Ru ); 

5: end for 

// Select winner 

6: Sort wu for all u W in the nondecreasing order and the list 

is denoted by Ω; 

7: ξ denotes the head of Ω ; 

8: Set ξ as the winner of reverse auction; 

//Evaluate the winner‘s work and pay the rewards 

9: Give a score to ξ and update her reputation; 



D. Payment Mediation 

At last, the requester needs to pay the winner and losers as 
(9). The reward offered to the winner is the average of two 
values: the winner‘s actual bid price and the sensing task value. 
To maintain the losers‘ willingness in participating in MCS 
systems, they are paid with task compensation for data 
collection (The payment scheme is explained in the next 
section). 



V. PERFORMANCE ANALYSIS AND EVALUATION 

Having presented the detailed design of CSII, in this 
section we present and discuss its performance over 
theoretical analysis and experiments. 

A. Analysis of the CSII Mechanism 

The CSII mechanism provides a new incentive mechanism 
of using cross-space data and interactions among three entities. 
Before getting into the experiment part, we first give an 
analysis to explain the main design considerations. 

Q1: Why do we need to pay the losers? 

A: In CSII, only one worker is selected as the winner. If we 
just pay the winner for her sensed data, other workers who fail 
in the reverse auction without reward would lose interest in 
collecting data in the future. Therefore, task compensation is 
necessary in mataining the loser‘s willingness in participation. 

Q2: Why does the payment to the winner be the average of 
her actual bid price and the task value? 

A: Our starting point in using the average value as payment 
is to ensure that the requester‘s total payment for all the 
workers, including both the winner and losers, should be as 
close as possible to the budget suggested by the platform. This 
setting, as discussed later, is a win-win choice.  

When the winner‘s actual bid price is larger than the 
sensing task value, if the reward for the winner is set as her 
actual bid price, the total payment for all the workers is: p1 = bu 
+ ( m – 1 ) * α * v. If paying the winner the average value, the 
payment is:  p2 = 0.5 * ( bu + v ) + ( m – 1 ) * α * v .The value 
of  p1 exceeds the suggested budget as: p1 –B = bu – v , while 
the value of p2 exceeds the suggested budget as: p2  – B = 0.5 * 
( bu – v ). Paying the winner the average value would make the 
payment closer to the suggested budget.  

On the other hand, when the winner‘s actual bid price is 
smaller than the sensing task‘s value, our payment scheme 
increases the winner‘s income compared with his claimed bid 
price. The winner who adopts the average payment scheme 
would get more reward than the other scheme presented above, 
which is calculated as: 0.5 * ( bu + v) – bu= 0.5 * ( v  – bu ) > 0. 
This may improve the winner‘s willingness in continuously 
accepting the sensing task. We regard this setting as a win-win 
solution because on one hand we can always motive workers‘ 
participation by paying the winner almost equivalent price to 
her expection, on the other hand we ensure the sustainability of 
the platform by not allowing the requester‘s paying too much 
in one task.  

Q3: Why do workers submit bid prices after data collection? 

A: There have been studies that bid prices are submitted 
before data collection. However, it is hard for a worker to 
estimate how difficult the collection task is and she cannot 
provide an objective bid price before data collection. Therefore, 
after performing the sensing task, a worker can offer a 
relatively objective bid price according to her work experience 
and the task value suggested by the platform. 

Q4: Why do we select m workers for data collection but 
only the winner submits the data? 

A: The reason why we only need the winner to upload the 
sensing data is that for one single task, large amount of data 
may cause data redundancy and increase network traffic. The 
reason why we select m workers for data collection is that a 
certain number of data collectors can provide a competitive 
environment, which impels the workers to sense high quality 
data to win in the reverse auction as well as obtaining a high 
reputation. The competitive environment also avoids the 
raising of unreasonable bids in the reverse auction.  

Q5: Why do we use reverse auction? 



A: In paper [16], Reddy et al. draw conclusions as follows: 
(1) monetary incentives often increase interest in participating 
and reinforce good data collection habits. (2) micro-payment 
[16] based on competition like auction might encourage 
workers to collect data with high quality. Hence, micro-
payment based on reverse auction may be a good choice. In our 
mechanism, only one winner is needed. The winner might 
increase her claimed bid price for selling the sensed data to 
maximize her expected profits. To overcome the challenge, we 
select the winner by using reverse auction, which could avoid 
monopoly to restrict worker‘s claimed bid price closing to her 
sensing cost. 

Q6: Why can the reputation reflect the quality of the sensed 
data? 

A: If the quality of the data collected by the winner is very 
poor, in the procedure of data quality evaluation, the winner 
will get a very low score as well as a low reputation. Low 
reputation will decrease a worker‘s probability to win in the 
next task reverse auction. Therefore, people with low 
reputation may not win in future auctions except that they 
claim a very low bid price. However, in the long term, if 
someone always provides poor quality data, she may not win 
any more in the future even she claims a low actual bid price. 
Hence, with this mechanism, the one who occupies a high 
reputation has more chance to win, which ensures the quality 
of the collected data at the same time. 

 Q7: Why do we limit the number of accepted tasks for each 
worker? 

A: In CSII, we set that each worker can perform a fixed 
number of tasks at most at the same time. In reality, there are 
many requesters publishing tasks, and users with top rankings 
will be pushed many tasks beyond their ability. To tackle this 
problem, we propose to limit the number of accepted tasks for 
every worker. First, we can avoid denunciative users 
destroying MCS systems by accepting too many tasks but not 
perform the tasks they claim. This may reduce the quality of 
data collection and reduce the quality of the service offered by 
MCS systems. Second, accepting too many tasks will lead to 
poor data quality or even cause the task unfinished. Limiting 
the worker‘s maximal number of tasks can solve this problem. 
Third, to those workers with high rankings, although they are 
capable of receiving a large number of tasks, as the number of 
their accepted tasks is limited, they have to give up some tasks 
to those workers with average or even low rankings. This is a 
way to improve the probability of low-ranking workers‘ 
accepting a task, as well as avoid workers‘ dropping out of the 
system. As a result, this scheme can maintain a certain number 
of active workers. 

B. Simulation Setup 

To evaluate the performance of our mechanism, we 
implement the CSII mechanism with a simulation experiment 
based on a real check-in data set collected from Jiepang

1
 – a 

popular LBSN website in China. This LBSN dataset contains 
966,814 records, 54,148 users, and 33,232 locations, where 
the check-in longitude and latitude range from 121.21388733 
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to 121.8059799, and from 31.01791000 to 31.34228544, 
respectively. We divide the area covered by check-in records 
into many geographical blocks. The number of check-in 
records in each block ranges from 1 to 48,419. As the number 
of check-in locations in some blocks is too small, in the 
simulation we ignore these blocks whose check-in records are 
fewer than 1,000. Thus, 28 blocks are used in our simulation, 
and the check-in record number of the 28 blocks ranges from 
1,010 to 48,419. 

In the simulation, we set the task limitation of every worker 
as 5. In every block, 10 different sensing tasks are published, 
i.e., we have 280 sensing tasks published in total in the whole 
simulation process. The time slots of the 280 sensing tasks 
range from 1 to 24, and the number of expected workers is 
randomly selected from the set {10, 20, 30, 40, 50, 60, 70, 80, 
90, 100}. When receiving a sensing task, the worker should 
decide whether to accept the sensing task or not. We assume 
that, when the worker‘s expected reward is larger than β times 
of her true value [12], the worker would accept the sensing 
task. Expected reward is calculated using (10). True value 
denotes the minimum price at which the worker wants to sell 
the sensed data. Every worker has her true value, which is 
different from her actual bid. 
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In the simulation, the method of generating true value is as 
follows. There is a task whose evaluated value is the minimum 
for all tasks published in this block, i.e., the valid period of the 
task is more than 24 hours. The worker‘s true value is 
randomly generated in the form of gaussian distribution where 
the expectation μ is the minimum task value in her check-in 
block and the standard deviation σ is 1. If a worker has a 
check-in record in several blocks, we select the minimum 
value as the expectation.  

   We simulate the following three distributions of actual 
bid price distributions among workers: uniform distribution, 
exponential distribution, and gaussian distribution. The 
uniform distribution is abbreviated as U(a,b), where a equals 
to the true value of a worker and b equals to three times of the 
task value. The parameter of exponential distribution is the 
worker‘s true value, and the actual bid price generated in this 
method is larger than her true value. For the gaussian 
distribution, the expectation is the average of the worker‘s true 
value and the task value. 

When the requester evaluates the sensed data contributed 
by the winner with the scores ranging from x to y, we set x 
equals to 1 and y equals to 10 in the simulation. The score 
given to the winner is generated according to the following 
rule: the score is larger than 7 with a probability of 60% and is 
smaller than 7 with a probability of 40%. 

C. Evaluation Result 

To evaluate the performance of CSII, we use the following 
metrics: acceptance ratio, overpayment ratio, average profit 
ratio, and average extraneous earning. 



In simulation, two parameters would affect the worker‘s 
decision on whether to perform the sensing task: parameter α 
used in (9) and (10) and parameter β used to make the decision 
of task acceptance. The values of α and β are as follows. 

α={0.01,0.03,0.05,0.07,0.09,0.11,0.13,0.15,0.17,0.19,0.2} 

β={0.01,0.05,0.1,0.15,0.2,0.25,0.3} 

Figure 3 illustrates how the two parameters α and β affect 
the worker‘s decision on accepting the sensing task or not. The 
acceptance ratio is the percentage of accepted numbers in set S, 
i.e., the number of accepted workers divided by the number of 
workers in set S. We can see that the acceptance ratio 
decreases with the increasement of β, and increases as α 
increases. This is because if α takes a large value, the worker‘s 
expected reward would increase, which increases her 
willingness in participation. In Fig. 3, when α takes a value 
larger than 0.07, no matter what value β is, the acceptance 
ratio of workers is always greater than 98%. What‘s more, the 
expenditure of the requester will increase with the 
increasement of α. Therefore, we set α=0.03, β=0.15 in the 
later evaluation, where the acceptance ratio is larger than 98%. 

 

Fig.3. The acceptance ratio affected by compensation parameter α and 
accepted decision parameter β, x-axis is compensation parameter and different 
polylines represent different β 

In our simulation, 10 tasks are published in every block. 
We select 28 blocks to illustrate the requester‘s overpayment 
ratio with three different actual bid price distributions. If the 
overpayment ratio is negative, the payment to all the workers 
is smaller than the suggested budget. Otherwise, the payment 
is larger than the budget.  

Figure 4 shows the average overpayment of the 10 tasks 
published in each block. Only the 27th block‘s average 
overpayment is positive under the exponential distribution, 
which means that our CSII mechanism can provide a good 
budget suggestion within the total payment. Among the three 
distributions, the overpayment ratio of the exponential 
distribution is the biggest while the overpayment ratio of 
gaussian distribution is the smallest. This is because the actual 
bid price under the uniform distribution has a bigger 
probability to have a higher value than other distributions. In 
uniform distribution, the biggest value the actual bid price can 
take is three times of the task value. In gaussian distribution, 
although the actual bid price can be larger than three times of 
the task value, the probability of this situation is very small 
with the standard deviation σ being 1. In conclusion, no matter 

what distributions is used, their majority average overpayment 
is below zero. 

 

Fig.4. The average overpayment ratio under three different distributions in the 
28 blocks  

We assume that the true value represents the cost that a 
worker spends on performing the sensing task. Under the 
assumption, the profit for the winner is defined as the 
difference between the reward she obtains and her true value. 
Extraneous earning is defined as the difference between the 
reward and her actual bid price, which is the extra earning 
people obtains than her initial expectation. Figure 5 shows the 
average profit of the winners in each block. The results of the 
three distributions are greater than zero, indicating that no 
matter what distribution the bid price follows, most winners 
would have a positive profit and benefit from her work. Figure 
6 illustrates the average extraneous earnings of the winners, 
where the average extraneous earnings of 10 sensing tasks of 
each block is larger than zero except for the 9th block under 
uniform distribution. Most winners can get more reward than 
their initial expectations, which also applies to the losers, since 
they might get nothing compared to other incentive 
mechanisms. Benefiting from the CSII mechanism can 
improve the willingness of user participation. 

 

Fig.5. Average profit ratio under three distributions in the 28 blocks 



 

Fig.6. Average extraneous earning under three distributions in the 28 blocks 

We obtain the average reputation of the winners for the 10 
sensing tasks in each block. The average reputation of the 
winners in each block is shown in Fig. 7, in which the average 
reputation is larger than 0.66. Since the winner is selected 
based on two factors—reputation and actual bid price, the 
reputation of the winner may not be the highest of all workers. 
However, as demonstrated by Fig. 7, the reputation of selected 
winners remains at a relatively high level (reputation > 0.66), 
which indicates that our proposed method can ensure the 
quality of sensed data. 

 

Fig.7. Average reputaiton of the winners in 280 tasks in different blocks 

VI. CONCLUSION 

In this paper, we have designed a new incentive 
mechanism for mobile crowd sensing systems called CSII. It 
leverages the interactions among requesters, the task 
management platform, and selected workers to achieve 
dynamic budget, optimal task allocation, and high willingness 
on participation. In addition, a combination of online and 
offline data have been explored in CSII for task value 
estimation and worker selection. Experiment results indicate 
that CSII succeeds in making a tradeoff between maintaining a 
certain number of workers and in making the payment of the 
requester approximately within the suggested budget. As for 
future work, we will deploy the mechanism in real world MCS 
systems (like our project FlierMeet [17]) and evalutate its 
performance in practice. Also, we intend to consider about 
other factors that impact user participation, such as user 
preference and privacy protection, and improve the CSII 
mechanism.  
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