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Abstract 

The study of geo-social behaviors has long been a scientific problem. In contrast to 

traditional social science, which suffers from the problems such as high data collection 

cost and imported user subjectivity, a new approach is presented to study social 

behaviors based on mobile phone sensing data. Different from other similar studies on 

mobile social sensing, three different types of geo-social behaviors, including online 

interaction, offline interaction, and mobility patterns, are characterized based on a newly 

released Nokia mobile phone dataset. We further discuss the impact factors to these 

behaviors as well as the correlation among them. The findings in this paper are crucial 

for many different fields, ranging from urban planning, location-based services, to 

social recommendation.  

Keywords: geo-social behaviors, online/offline interaction, mobility patterns, mobile 

phone sensing, correlation analysis 

1. Introduction 

Man is by nature a social animal — Aristotle. In physiology or sociology, social 

behavior is a behavior directed towards society, or taking place between, members of 

the same species
1
. Numerous concepts are included in the scope of social behavior, such 

as online interactions, offline or face-to-face interactions, human mobility, and so on. 

Therefore, one of the most important problems in social behavior study is to extract the 

associated geographical or social properties (i.e., geo-social properties) from human 

daily behavior history. Many applications can benefit from human social behaviour 

study. For instance, understanding of human interaction patterns is important to provide 

social recommendations (Guo et al. 2012a) and control the spread of diseases (Eubank 
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et al. 2004), whereas accurate models of human mobility are essential for urban 

planning or targeted advertising (Gonzalez, Hidalgo, and Barabasi 2009). 

Many efforts have been made to benefit the study of social behaviors. To study 

human social behaviors, data collection is of most importance. In traditional social 

science, data is collected majorly by self-reporting and interviewing (Lazer et al. 2009). 

The data obtained in this manner is often sparse and subjective, which limits the scale 

and accuracy on social study. With the development of pervasive sensing and wireless 

communication techniques, it is now possible to collect various “digital footprints” left 

by people while interacting with cyber-physical spaces. Leveraging the capacity to 

collect and analyze the “digital footprints” at community scale, a new research field 

called “social and community intelligence (SCI)” (Zhang, Guo, and Yu 2011a) is 

emerging, which aims at revealing the patterns of individual, group and societal 

behaviours. The scale and heterogeneity of the multimodal, mixed data sources present 

us an opportunity to compile the digital footprints into a comprehensive picture of 

individual’s daily life facets, radically change the way we build computational models 

of human behaviour, and enable completely innovative services in areas like human 

health, public safety, city resource management, environment monitoring, and so on. 

There have been studies that aim to extract social behaviors from human digital 

footprints (refer to Section 2 for details). However, none of them studies three types of 

behaviors (online/offline/mobility) as a whole; the impact factors to the three types of 

social behaviors and the correlation between them are also not well addressed. 

This paper aims to understand human social behaviors by analyzing the large-scale 

data collected from off-the-shelf smart phones. Our work is based on the Nokia open 

project “Mobile Data Challenge”
1
. It consists of mobile phone sensing data collected 

from 200 subjects over one year. Compared to the mobile phone dataset used in 

previous studies, the Nokia dataset contains more comprehensive information that can 

be sensed in off-the-shelf smart phones, such as GPS logs, Bluetooth & WLAN records, 

accelerometer readings, call logs, short messages, and so on. The rich dataset presents 

an unprecedented opportunity to study human social behaviors from different 

perspectives. In this paper, we aim to study human geo-social behaviors with some new 

                                                 

1 http://research.nokia.com/page/12000 
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insights and assumptions. Specifically, the main contributions of this paper can be 

summarized as follows: 

 Extracting human geo-social properties from mobile phone data. By analyzing 

the large-scale mobile phone data, we attempt to understand human geo-social 

behaviors from three different aspects: online interaction, face-to-face interaction, 

and mobility patterns.  

 Exploring the impact factors to social behaviors. We analyze the impact of 

different factors to social behaviors, such as age, occupation, time, distribution of 

public infrastructure, and so on. The results indicate that different communities of 

users have obvious diversities in social interaction and activity patterns. 

 Studying the correlation of geo-social properties. The relationship between human 

friendship and interested visiting areas is studied; the correlation between online 

and offline behaviors is also studied. 

 Using advanced techniques for social behavior analysis. To achieve the above 

goals, new techniques and approaches are leveraged. First, we propose a generic 

framework for human-behavior understanding using the heterogeneous data 

collected from mobile phones. It presents a systematic approach to mobile phone-

enabled social behavior study. Second, new methods are proposed for human 

behavior analysis. For example, to understand human mobility, we propose a 

clustering-based algorithm to detect the global and individual crucial regions, and 

leverage a combination of geo-interaction matrix and social network analysis 

methods to study human mobility patterns.  

The rest of this paper is structured as follows. Section 2 gives a summary of the 

related work. A generic framework of mobile phone sensing-based social behavior 

study and the problems addressed in this paper are presented in Section 3. In Section 4 

we analyze online and offline behaviors. The impact factors to human behaviors and the 

correlation between geographical and social behaviors are investigated in Section 5. 

Additional findings and discussions are given in Section 6. We conclude our work in 

Section 7. 
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2. Related Work 

The study of human geo-social behaviors through mobile phone sensing is tightly 

related with the following research issues: mobile social sensing, human mobility 

patterns, and geo-social property association. 

2.1. Mobile Social Sensing 

Forging social connections with others is the core of what makes us human. Mobile 

social sensing aims to understand social behaviors and improve social connectivity in 

physical communities by leveraging the information detected by mobile devices.  

By logging various aspects of physical interactions and communication among 

people (e.g., co-location, conversations, and call logs) and mining user behavioral 

patterns (e.g., places of interest), mobile phones can be used to analyze and predict 

social relationships among people. For example, the Reality Mining project of MIT can 

infer 95% of friendships on the basis of observational data from mobile phones (Eagle , 

Pentland, and Lazer 2007). Social Serendipity matches the interests among nearby 

people and cues informal, face-to-face interactions to like-minded ones (Eagle and 

Pentland 2005). Li et al. (2008) proposed a friend recommendation approach that mines 

similarities among users (e.g., points of interest) on the basis of their location histories, 

collected from GPS-equipped mobile phones. Social Contact Manager (Guo et al. 2013) 

has demonstrated how to merge the complementary features of online and opportunistic 

social networks, to automatically collect rich information (e.g., user profile, face-to-face 

interaction events) about their contacts. GroupMe (Guo et al. 2012a) is a group 

formation and recommendation tool that aims to facilitate social activity organization in 

the real world using mobile phone sensing.  

The above studies have demonstrated how to leverage mobile sensing techniques to 

facilitate social interaction and enhance social connection. Different from these studies, 

our paper focuses on the spatial-temporal patterns of social interaction, and it 

particularly addresses the correlation between online and offline interaction behaviors. 

2.2. Human Mobility Patterns 

Observing and modeling human mobility in urban environments are essential for the 

planning and management of urban facilities and services. However, a key difficulty 

confronting urban planners and social scientists includes the challenge and cost of 
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obtaining large-scale observational data on human mobility. The massive volume of 

sensing data collected from sensor-equipped smart objects (e.g., smart phones, smart 

vehicles, smart cards), however, paves the way for studying large-scale human mobility 

patterns (e.g., where people often go at 9:00 pm in Tokyo). For example, an interesting 

study based on the monitoring of 100,000 mobile phone users, conducted by 

Northeastern University in US, revealed that human mobility has a high degree of 

spatio-temporal regularity (Gonzalez, Hidalgo, and Barabasi 2009). Liu et al. (2009) 

reported the use of multiple real-time data sources (GPS data from taxis and smart card 

data from buses) to understand daily urban mobility patterns and traffic dynamics (e.g., 

hotspot detection). Although some models have been proposed to present human 

mobility patterns, the factors leading to those patterns are still not clear. To address this 

problem, Rinzivillo et al. (2013) proposed a general method to evaluate the influence of 

administrative borders to human mobility. Our work differs from this work at two 

aspects: (1) heterogeneous data is utilized to characterize user online and offline 

activities; (2) we find that human mobility is impacted by several factors, such as user 

age, occupation, friendship, and the distribution of public infrastructure.  

2.3. Geo-Social Property Association 

There have been several works that exploit the association between geographical and 

social properties. For example, by analyzing the data from Flickr, Crandall (2010) found 

that geographic distance affects online social interactions, where the probability of 

friendship decreases with distance. Sadilek, Kautz, and Bigham (2012) studied the 

correlation between geography and social topology by leveraging the data from four 

popular online social networks (OSNs). Others have investigated co-location and 

friendship and the possibility of predicting location using friendship information 

(Sadilek, Kautz, and Bigham 2012). In our work, the correlation between social ties and 

human mobility patterns has also been studied. However, different from existing studies 

that are mainly based on OSN data (only check-in points are available), our work is 

based on a smartphone sensing dataset which contains multi-dimensional human 

interaction data (e.g., human mobility trajectories, call logs, Bluetooth) collected from 

the real world.  
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3. Mobile Phone Enabled Human Behavior Understanding 

Using large-scale data collected from mobile phones to understand human behaviors is a 

promising research area. This section we firstly give a generic framework for mobile 

phone-enabled social behavior study. The data that supports this work and the problems 

tackled will then be described. 

3.1. The Generic Framework 

A generic framework for mobile phone-based human geo-social behavior understanding 

is shown in Fig. 1. It consists of four layers, mobile phone data collection, geo-social 

property analysis, geo-social property fusion, and applications. 

 

Fig. 1. A generic framework for geo-social behavior study based on mobile phone data. 

The mobile phone sensing layer is responsible for collecting data from mobile 

phones using various sensors. The geo-social property analysis layer applies diverse 

data mining techniques to convert the low-level, single-modality sensing data into high-

level properties, characterizing human behaviors from different dimensions, including 

online interaction, offline interaction, and mobility patterns. The geo-social property 

fusion layer studies the correlation among various properties (e.g., online/offline 
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behavior interaction), and leverages the aggregated power of properties to predict 

human behaviors (e.g., human mobility prediction). Finally, the application layer 

includes a variety of potential services of mobile phone sensing. 

3.2. Data Preparation and Problem Description 

Our work is based on the Nokia open project “Mobile Data Challenge”. Nokia launched 

a data collection campaign wherein Nokia N95 phones were allocated to nearly 200 

participants in Lausanne, Switzerland. The data collection software runs on the 

background of the phones in a non-intrusive manner, yielding data on modalities such as 

social interaction and geographical behaviors. In addition, a questionnaire is included 

which provides user profiles such as gender, age, occupation, and so on. The dataset 

released in the challenge contains the data of 38 users in nearly two years. To 

understand the three types of social behaviors, the following data are leveraged, as 

summarized in Table 1.  

Table 1. Data sources for geo-social feature extraction 

Behavior Data source Data type description 

 

 

Online interaction 

Phone calls Income/outgoing calls,  

Time (Weekday, Weekend) 

SMS messages Income/outgoing messages 

Contact book Contact name/friends 

Offline interaction Bluetooth Number of people meet 

 

Mobility 

GPS Outdoor activities 

WLAN Indoor activities 

Based on the Nokia dataset, we want to answer the following questions: (1) whether 

online/offline interactions are affected by various physical factors or personal profile 

information, such as time, age, occupation, and so on? To answer this question, we 

carefully choose and specify the parameter settings in Table 2. The time factor is 

studied at two dimensions: “workday/holiday” and “daytime/night”. We choose three 

user groups from the Nokia dataset, one group for students, age ranging from 22-32, and 

the other two for full-time workers, age ranging from 22-32, and 33-44. In other words, 

we have two occupations and two different age groups (young and middle-aged) for a 

comparative study on human social behaviors. (2) What are the human mobility patterns 
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and what factors affect human mobility? (3) Are there correlations between different 

types of social behaviors? We will answer these questions in the following sections. 

Table 2. Parameter settings in the mobile phone data analysis 

Element Abbreviation 

Time W (Workday), H (Holiday), D (Daytime), N (Night) 

Mobile service I (Incoming), O (Outgoing), V (Voice call), M (Message) 

Age and occupation Student (22-32), WorkerY (22-32), WorkerM (33-44) 

4. Understanding Social Interaction Behaviors 

Based on the framework and dataset described in Section 3, in this section we present 

our observations and findings about online and face-to-face interaction behaviors. The 

impact of different factors to human interaction, including time, age and occupation, is 

also studied. 

4.1. Online Interaction 

We analyze the call log data to characterize users’ online communication/interaction 

with others. The results shown in Fig. 2(a)(c) describe the distribution of daily online 

interaction of the three user groups under different parameter settings, while Fig. 2(b)(d) 

shows the detailed results by combining these parameters. 

  

                 (a)                                        (b) 

  
                 (c)                                        (d) 

Fig. 2. Online communication analysis for different user groups. 
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There are shared observations for the three groups. For example, we find that people 

have more online communications at night than in the daytime. The communication in 

holidays is more than that of workdays. Taking consideration of the impact of 

occupation, we find that the communication modes for students and workers are 

somewhat different. For instance, the phone calls in holiday daytime of students 

increase significantly compared with workday daytime, while for workers there is no 

evident change. It reveals that in the daytime of weekends, there are more 

communications and possibly associated social activities (e.g., appointments, 

gatherings) among the buddies in the student group. When the age factor is considered, 

we can find that compared to young workers, middle-aged workers have more incoming 

calls than outgoing calls. It is possibly because they have a relatively higher position in 

the organization. Compared to middle-aged workers, young workers have more phone 

calls but fewer short messages.  

The above findings by its nature reveal the correlation between human profile and 

daily behaviors. These findings make it possible to ‘label’ a user (e.g., young people, 

students) when we have his/her mobile sensing data. The labels can be further used for 

target marketing and item recommendation services.  

4.2. Offline Interaction 

We leverage historical Bluetooth scanning data from mobile phones to study offline, 

face-to-face interactions. Bluetooth proximity sensing allows us to quantify time spent 

in face-to-face proximity for individuals, which makes it perfect for offline interaction 

analysis. For example, if a user spends a lot of time at home or in the office, the number 

of Bluetooth devices he/she meets usually remains constant. On the contrary, if he/she 

has lots of outdoor social activities, the number of Bluetooth devices may increase 

(because he/she has chance to meet more Bluetooth device users outdoors). A further 

statistical analysis can be conducted over the scanned data records to extract user offline 

interaction patterns. 

The CDF (cumulative distribution function) of Bluetooth-scanned devices of the three 

user groups during different periods of time is given in Fig. 3. The horizontal axis refers 

to the number of scanned devices and the vertical axis stands for the ratio to the total 

number of scanned devices. It is obvious that the number of scanned Bluetooth devices 
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at night is significantly larger than during daytime, which indicates that people have 

more face-to-face interactions and outdoor activities at night. We can also find that 

people are more active in workdays than in holidays. Compared to young workers, it is 

obvious that middle-aged workers have fewer offline interactions in any time slots. The 

most significant difference can be found at holiday night. Workers interact more than 

students except in workday daytime. Maybe it is because that students can meet many 

classmates in the classroom.  

 
Fig. 3. The CDF distribution of Bluetooth scans. 

5. Understanding Human Mobility Patterns 

Having described the social interaction patterns, in this section we investigate human 

movement and mobility patterns in the urban area, characterizing the association of 

human mobility with other factors, such as user age, occupation, time, geographical 

limitation, and so on.  

5.1. The Approach for Human Mobility Analysis 

To understand human mobile patterns over a given large area, a general way is to 

segment the target area into crucial regions by establishing the socio-geographic 

boundaries (Lee, Wakamiya, and Sumiya 2011). It on one hand facilitates the detection 

of frequently visited areas of human, and on the other hand, enables the study of human 
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mobility patterns based on the transformation among the crucial regions. In the 

following, we present our method for socio-geographic boundary detection and mobility 

pattern analysis. 

(1) Socio-Geographic Boundary Detection 

The problem can be formulated as follows. The input is the original geo-trajectories 

which consists of a set of spatial-temporal points distributed over a large area S, 

formulated as 
1 1 1 2 2 2

( , , ), ( , , ), ..., ( , , )
n n n

x y t x y t x y t , where
i

t represents the timestamp of a 

location point ( , ),  1
i i

x y i n  . The output is a set of crucial regions (or point of 

interests (Davies et al. 2001)) by partitioning S, denoted by
1 2

{ , , ..., }
m

L L L L . The 

problem is how to obtain crucial regions from S. 

 

Fig. 4. The approach for mobility analysis. 

The grid-based method was traditionally used to partition geo-trajectories (Zhang et 

al. 2011b). However, the number and size of grid cells are difficult to determine (Lee, 

Wakamiya, and Sumiya 2011), and it may suffer from information loss when using grid 

cells (Cao, Mamoulis, and Cheung 2005). In our solution, we propose a clustering-based 

approach to identify crucial regions from human geo-trajectories. As shown in Fig. 4, 

because the volume of the original geo-trajectory is extremely large, a preprocessing 

step is introduced to filter noisy data. In general, people often stay at crucial regions 

with low speed and long time span. For example, in the park, people usually stay for a 

long time period with low speed. Therefore, in the filter, two factors – speed and time 

span are considered to filter the noisy data from the original geo-dataset. According to 
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the results of Browning (2006), the average walking speed for young pedestrians is 

around 1.5 m/s. Therefore, in the filter, the points whose velocity is above 1.5m/s are 

removed (leaving low speed points). We also calculate the mobility range during a 

given time period, symbolized by t. If the mobility range is above 1.5×t, the relevant 

geo-sequence is removed as well (it means the observed object keeps moving during 

that period). 

The mean-shift clustering algorithm (Comaniciu and Meer 2002) is used to find the 

number and the centers of crucial regions. The strengths of mean-shift algorithm 

include: (i) suitability for real data analysis, (ii) no assumption of any prior shape of 

data clusters, and (iii) robustness for arbitrary feature spaces. More importantly, the 

mean-shift algorithm can detect the number of clusters automatically with the adaptive 

gradient ascent, without the need to predefine its value. To find fine-grained clusters 

with less computational complexity, we set the radius of a cluster to ‘50m’. It is also a 

reasonable setting considering the general boundaries of the crucial regions (e.g., a station, a 

supermarket) discussed in this work. The centers of clusters can also be calculated based 

on the clustering result, which indicate the estimated coordinate points of the crucial 

regions obtained.  

(2) Geo-Interaction Matrix Extraction 

Based on the segment of socio-geographic boundaries, the most frequently visited 

regions are detected. According to those crucial regions, we formulate the interaction 

among crucial regions by the geo-interaction matrix (GIM). The process of GIM 

extraction is illustrated in Fig. 5. Trajectory transformation projects the original geo-

trajectory sequences into the sequence of crucial spatial regions according to the socio-

geographic boundaries. Wij  refers to the interaction strength between 
i

L  and 
j

L , 

which is simply calculated as the interaction frequency between the two crucial regions.  
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Fig. 5. GIM Extraction Process. 

 

 

5.2. Global Mobility Patterns 

To reveal human mobility patterns, we process all the geographic trajectories according 

to the proposed solution. Based on our proposed solution, the original trajectories are 

partitioned into 106 crucial regions. As shown in Fig. 6a, the partitioned regions can be 

presented by a voronoi diagram (Kise, Sato, and Iwata 1998) using the centers of the 

clusters. We find that the distribution of crucial regions is not even, with most of them 

concentrated on the southwest region of Lausanne while few in the north and east area.  

We find that for the uneven distribution of spatial regions, the nature terrain plays a 

significant role. As shown in Fig. 6b, Lausanne is situated on the north coast of Geneva 

Lake (Lac Leman). The east and north of Lausanne are mountainous terrain with the 

famous ‘Jungfraujoch’ in Switzerland. However, there are open plains in the southwest 

of Lausanne. It is obvious that most of the spatial regions are situated on those open 

plains and off the coast of the Geneva Lake, which provide more farmlands, water 

resource and developed transportation systems. 

 

(a) 



14 

Geneva Lake

Plains

Lausanne

Mountain

 

(b) 

Fig. 6. Detection of socio-geographic boundaries. 

 

Fig. 7. Visualization of the geo-interaction matrix 

We construct the GIM based on the method proposed in Section 5.1, which indicates 

the transfer patterns among spatial regions. We analyze and visualize the GIM with 

Cytoscape
1
, a powerful tool for social network analysis and visualization. In Fig. 7, each 

                                                 

1 http://www.cytoscape.org/ 
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node represents a crucial region; the arc between nodes means an interaction between 

them. The size of a node indicates its degree, and the width of an arc represents the 

interaction strength. The degree distribution of the GIM is illustrated in Fig. 8. As 

shown in Fig. 8, most nodes in the interaction matrix have low degree, and only a few 

nodes have high degree, which partly shows a power law distribution. 

 

 

Fig. 8. The degree distribution of geo-interaction matrix 

To understand the formation of nodes with high degree, we select the top eight 

nodes with the highest degree and project them onto the Google Earth (see Fig. 9). 

Table 3 shows the information of the cluster centers. It is interesting that most of those 

nodes with the highest degree are close to the bus or metro stations. For example, the 

cluster 1 with the highest degree is very close to Prilly-Malley, which is a busy metro 

station with the passing of more than 500 trains each day. This phenomena indicates 

that the distribution of public infrastructures, such as transport junctions, supermarkets, 

is also an impact factor for human mobility.  

 

Fig. 9. Distribution of the top eight nodes ranked by its degree. 
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Table 3. Parameter settings in mobile phone data analysis 

Cluster ID Cluster 
center 

Physical 
location 

GPS point 

1 6.602997E  

46.525801N 

Prilly – Malley 46°31’35.96’’N   

6°36’9.56’’E 

5 6.877764E  

46.450483N 

La Tour-De-

Peilz 

46°27’4.65’’N   

6°52’38.10’’E 

6 7.076414E  

46.106336N 

Martigny 46°6’20.90’’N   

7°4’44.87’’E 

7 7.244203E  

46.148461N 

La Taoumaz 46°8’37.88’’N   

7°14’14.59’’E 

8 6.807135E  

46.613154N 

Ecublens-Rue 46°36’37.59’’N  

6°48’39.84’’E 

10 6.531976E  

46.720782N 

St-Eloi 46°43’13.08’’N  

6°31’57.38’’E 

12 7.316969E  

46.203881N 

Aproz 46°12’22.87’’N  

7°18’57.39’’E 

16 6.366956E  

46.490508N 

Croix de 

Luisant 

46°29’27.62’’N   

6°22’6.44’’E 

5.3. The Profile-Mobility Correlation Analysis 

Besides analyzing the mobility patterns at the global level, we also cluster the crucial 

regions at the individual level. It can be used to analyze the interested activity places for 

individuals. From the results shown in Fig. 10, we can find that most people visit more 

places at night than that of daytime. The number of daytime activity places is at an 

average of five, which indicates that daytime activity place is relatively fixed. Further, 

compared to workday nights, there are more activity places at holiday nights. 

We also project the centers of clustered activity places onto the Google Earth and 

examine the semantics/categories of them. As shown in Table 4, differences exist on the 

categories of activity places with respect to user age and occupation. We find that for 

middle-aged workers, they prefer to stay in workplaces on workdays, and have outdoor 

activities during holidays. In contrast, young workers often have indoor amusements 

during holidays. For students, their activity places are mostly centralized in the school 

and surrounding areas for both workdays and holidays. 

  
Fig. 10. Mobility patterns of different user groups (each horizontal axis point refers to a user that 

belongs to that group). 
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Table 5. Statistics of users’ activity places 

Group Time Place Time Place 

WorkerM 
WN uptown, scenic spot, etc. HN beach, park, etc. 

WD station, industrial park, etc. HD gym, shopping centre, etc. 

WorkerY 
WN shopping centre, chapel, etc. HN leisure square, dining-hall, etc. 

WD company, library, etc. HD shopping centre, station, etc. 

Student 
WN school, industrial park, etc. HN school, industrial park, etc. 

WD school, Station, etc. HD school, chapel, outskirts, etc. 

5.4. The Geo-Social Property Correlation Analysis 

To reveal the correlation between social ties and human mobility, we investigate the 

similarity of mobile trajectory between friends and non-friends. In Section 5.1, we have 

presented the work about crucial region extraction. Based on it, the spatial matrix, 

symbolized by S, is introduced to present the interaction frequency between crucial 

regions and individual user. As shown in Fig. 11, the size of S is m n, where m is the 

volume of users in the dataset; n is the size of the unique crucial regions; and Sij 

indicates the frequency that user i interacts with crucial region j. 

L1

User 1

User i

User m

Lj Ln

S

S11 S1j S1n

Si1 Sij Sin

Sm1 Smj Smn

User 1

User i

User m

0 1 1

1 Tij 1

0 1 0

User 1 User j User m

T

...

... ...

... ... ...

... ...

... ... ... ...

... ... ... ...

Social Tie MatrixSpatial Matrix

User j Sj1 Sjj Sjn

Si

Sj

 

Fig. 11. Construction of spatial matrix and social tie matrix 

Meanwhile, we construct the social tie matrix T based on a variety of mobile 

communication records, including call and short message logs, and Bluetooth & WLAN 

records. To detect the social ties among users, we make an assumption that friends are 

more likely to meet each other or co-located frequently. Therefore, besides the contact 

records, we also analyze the Bluetooth and the WLAN records. The method presented 

in our previous work (Guo et al. 2012b) is leveraged, where contact frequency and 
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duration are used for friendship recognition. An example of the social tie matrix is 

shown in Fig. 11, where ‘0’ indicates non-friend, and ‘1’ means friendship. 

Based on S and T, we measure the similarity of mobile trajectories among users 

according to consine similarity as shown in Eq. (1), where Si and Sj are the row vectors 

in S respectively. By checking the relationship between user i and j in social tie matrix 

T, we can classify the trajectory similarity into two groups: friends and non-friends. We 

compare the trajectory similarity between the two groups. 

( , ) .
|| || || ||

ji
i j

i j

ss
cos s s

s s
                       (1) 

We analyze the similarity of mobile trajectories between friends and non-friends. 

Based on the digital footprints including communication records, Bluetooth and WLAN 

logs, totally 37 social ties are labeled as friendship and the others as non-friendship. As 

shown in Fig. 12, the average of similarity among non-friendship is illustrated in a blue 

line, while the similarity among friends is presented by red circles. Meanwhile, the inset 

in Fig. 12 shows the average of friendship and non-friendship as well. It is obvious that 

the average similarity among friends is higher than that of non-friends, which means 

that the stronger the social tie is, the higher likelihood of mobility patterns. This result 

reveals the correlation between social ties and human mobile patterns, which makes it 

possible to evaluate social tie strength based on mobility patterns.  

 

Fig. 12. Similarity of mobile trajectories between friends and non-friends. 
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6. Discussions 

In addition to the understanding of online/offline interactions, we are also interested 

about the correlation between them. For instance, if a person is active in the virtual 

space, is he/she also active in the physical space? The prediction of human mobility 

based on our research results will also be discussed. We finally discuss about the fusion 

of heterogeneous sensing data. 

6.1. Correlation between Online and Offline Behaviors 

We make a correlation analysis based on the call log data, Bluetooth data and 

GPS/WLAN data, which reflects the three behavior dimensions: online interaction, 

face-to-face interaction, and mobility pattern. Since the scale of different data types 

varies, the data is firstly normalized into the same scale space. As shown in Fig. 13, user 

activities at the three different behavior dimensions show a high positive correlation. In 

other words, if a person is active in one dimension, it is more likely that he/she is active 

in other dimensions. This conclusion is particularly true for the student group (left of 

Fig. 13). For example, for User 3 in the student group, he/she has the most 

GPS&WLAN records among the six people in the same group, and the numbers of 

his/her Bluetooth and Call Log records are also high compared to most other people. 

We further calculate the Pearson’s correlation coefficient among them. The results 

shown in Table 6 prove the positive correlation among the three behavior properties.  

 

Fig. 13. The three types of human behaviors (each horizontal axis point refers to a user that 

belongs to that group). 
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Table 6. The Pearson correlation of the three human behavior properties. 

 Student WorkerY WorkerM 

 Call 

log 

Blue-

tooth 

GPS & 

WLAN 

Call 

log 

Blue-

tooth 

GPS & 

WLAN 

Call 

log 

Blue-

tooth 

GPS & 

WLAN 

Call 

logs 
1  - - 1  - - 1  - - 

Blue-

tooth 
0.812  1 - 0.814  1  - 0.794  1  - 

GPS & 

WLAN 
0.744  0.946 1 0.657  0.453  1  0.758  0.538  1  

 

6.2. Towards a Mobility Prediction Model 

Location-Based Services (LBSs, e.g., FourSquare) become popular in recent years. The 

large-scale user-generated data collected from LBSs can be used for mobility pattern 

analysis, urban sensing, and travel planning. All these services depend on the 

establishment of the mobility prediction model. However, due to the diversity and 

complexity of human movement, the built of effective mobility prediction models is still 

a big challenge. 

Even though human movement have a high degree of freedom and variation, they 

also exhibit structural patterns due to geographic and social constraints. One of the aims 

of this paper is to understand what basic laws/factors govern human movement 

behaviors. By the analysis of both global and individual patterns, it is obvious that 

although the geographic terrain plays a significant role to restrain human mobility, the 

distribution of public infrastructure such as metro or bus stations can impact human 

mobility patterns. It indicates that the regularity of human mobility is controllable 

through urban planning. On the other hand, we analyze the impact factors leading to the 

variability of individual patterns. There are several reasons leading to the variability of 

human mobility, such as temporal factors, occupations and age. Further, as investigated 

in (Sadilek, Kautz, and Bigham 2012; Cho, Myers, and Leskovec 2011), humans 

experience a combination of periodic movement that is temporal-spatial limited and 

seemingly random jumps correlated with their social networks. For example, they find 

that people are more likely to visit a distant place if it is in proximity of an existing 

friend (Cho, Myers, and Leskovec 2011). We also observe that people with social ties 

are more similar in movement patterns than strangers, as depicted in Section 5.4.  
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Future work is to build a prediction model that can be used to predict human 

movement by taking consideration of different factors discussed above. Existing human 

mobility models, such as CMM (Musolesi, Hailes, and Mascolo 2004) and HCMM 

(Boldrini and Passarella 2010), do not consider all these factors. The introduction of 

multi-dimensional factors may benefit the mobility prediction model from the following 

aspects. (1) It enables the discovery of fine-grained patterns (knowledge), which can 

improve the prediction accuracy in domain-related applications. For example, we can 

train distinct prediction models for users of different occupation and age. (2) The 

introduction of social ties in mobility prediction can nurture novel applications. For 

example, we may predict if two people will meet in the next hour and recommend a 

lunch activity for them; we can control the diffusion area of information over cyber-

physical spaces by considering both online social ties and offline movement (Guo et al 

2012b). We plan to investigate these applications in the near future. 

6.3. Fusion of Heterogeneous Sensing Data 

The sensing capabilities of mobile phones keep increasing and mobile sensing data is 

accumulating with explosive rate. In Section 3, we propose a generic framework to 

gather, analyze, aggregate, and consume the data from mobile phone sensing. The 

proposed framework is also scalable to involve other data sources (e.g., wearable 

devices, static sensor networks, Internet of Things), given the gateways are built in the 

“data gathering” component for accessing data from other data sources. The aggregation 

and fusion of heterogeneous data presents new opportunities for rich context learning. 

For example, we can use a combination of microphone and Bluetooth sensors to 

characterize the ongoing social activity in a room, i.e., using the Bluetooth to identify 

nearby people, and using the audio data from mobile phones to recognize the activity 

type, such as ‘meeting’ or ‘party’ (Guo et al. 2013).  

Our framework presents a general method for heterogeneous sensing data 

processing, including data preprocessing, geo-social feature extraction, multi-feature 

fusion, and application development. We have also presented our practice and methods 

to heterogeneous data analysis and fusion. Nevertheless, more efforts should be 

explored at the methodology level. One potential direction is to explore the usage of 

multidisciplinary knowledge, such as social network analysis, complex networks, data 
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mining, and so on. For example, to characterize the properties of crucial regions in a 

city, social network analysis methods can be introduced (as presented in Section 5.2); to 

extract trustable information from large-scale sensing data, the method for establishing 

trust-based social networks (built based on interaction activities) can be explored 

(Mazzara, Hailes, and Mascolo 2013); to leverage mobile phone sensing for public 

security purpose, we should investigate the geo-social patterns regarding security-

specific scenarios using advanced data mining techniques. 

7. Conclusion 

We have presented our research on geo-social behavior analysis using mobile phone 

sensing data. Three types of behaviors, including online interaction, face-to-face 

interaction and mobility pattern, are studied based on the newly released Nokia dataset. 

The impact factors to these geo-social behaviors, including age, occupation, 

geographical limitations are also analyzed and discussed. We have further characterized 

the correlation among different behavior properties and discuss the way to build an 

effective mobility prediction model. The results and observations presented in this paper 

help us understand human social behaviors via a novel way: computation-based social 

sensing. We are particularly interested about the interaction between online and offline 

human behaviors, and will exploit the aggregation and association of the geo-social data 

extracted from cross-space environments to nurture new mobile social sensing 

applications. 
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