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Abstract— With the development of sensing, wireless 

communication, and Internet technologies, we are now living in 

a world that is filled with various smart things – the Internet of 

Things. This paper introduces and prospects an emerging 

research area – Embedded Intelligence (EI), which aims at 

revealing the individual behaviors, spatial contexts, as well as 

social patterns and urban dynamics by mining the digital 

traces left by people while interacting with Internet of Smart 

Things. The paper discusses the research history, 

characteristics, general architecture, major applications, and 

research issues of EI. 
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I.  INTRODUCTION 

With significant technological developments – as well as 
advances in sensors, wireless communications, and Internet – 
a lot of research areas have emerged, such as wearable 
computing, context-aware homes, mobile phone sensing, and 
smart vehicle systems. From those emerging areas, there is a 
clear trend to augment the physical devices/objects with 
sensing, computing and communication capabilities, connect 
them together to form a network, and make use of the 
collective effect of networked smart things − the Internet of 
Things. The Internet of Things is a technical revolution that 
represents the future of computing and communications, 
which brings us close to Weiser’s vision on ubiquitous 
computing. 

The incredible amount of information captured by 
trillions of smart things presents unprecedented opportunities 
to make sense of the world around us: our movements in 
public places may be captured by surveillance cameras, our 
location trails can be recorded by sensor-equipped mobile 
phones, human activities can be inferred when we 
accomplish tasks with everyday objects, public 
transportation record can be kept while we use smart cards, 
real-time traffic information can be derived from GPS-
equipped cars, buses and taxies... Each of these transactions 
leaves digital traces that can be compiled into 
comprehensive pictures of human daily facets, with the 
potential to transform our understanding of our lives, 
organizations, as well as societies. While in the past years 
significant research efforts have focused on exploiting the 
connection techniques (e.g., RFID) and standards to enable 
the Internet of Things [1, 2], there is still little work that 
concerns study of the application of Artificial Intelligence 

and Data Mining techniques over the large-scale, multi-
modal data collected from networked things to understand 
human life and social patterns. 

Different from previous work, here in this paper we 
dedicate to review the development and research trends of an 
emerging field called “Embedded Intelligence (EI)”, which 
aims at revealing the patterns of human/group behaviors, 
space contexts, as well as social and urban dynamics from 
the digital traces left by people while interacting with widely 
deployed smart things. A great variety of innovative 
applications are enabled by EI, in areas like mobile social 
networking, real-world search, city resource management, 
and environment monitoring. The paper gives a picture of the 
current state of the art on EI extraction. More specifically, it: 
 Provides the readers with a description of the evolution 

and characteristics of three forms of intelligence that 
can be extracted from various smart things, saying, 
individual intelligence, spatial intelligence, and social 
intelligence; 

 Reviews the enabled techniques and illustrates which 
are the major benefits of spread of this paradigm in 
everyday-life; 

 Offers an analysis of the major research issues the 
scientific community still has to face. 

 
Figure 1.  Embedded intelligence extraction. 

II. THE EVOLUTION OF EI RESEARCH 

Research on extracting individual, spatial, and social 

intelligence from smart things has been going on for a long 

time (see Fig. 1 for an overview of EI research). This section 



 

 

we review the evolution of EI research in terms of distinct 

sensing sources. 

A) Surveillance Cameras 

Surveillance camera can be viewed as the first smart 

sensing object that is widely deployed in public and critical 

spots to detect spatial contexts, human/group behaviors and 

social dynamics. Many intelligent visual surveillance (IVS) 

systems have been developed by using single or a collection 

of surveillance cameras. 

By analyzing the captured scenes from a fixed 

surveillance camera at a place, an IVS system can monitor 

the status of the space as well as human activities within the 

area. Chan et al. [3] developed a crowd counting algorithm 

based on Gaussian process regression to predict the number 

of people within an indoor environment. Saxena et al. [4] 

proposed a dedicated modeling approach to study scenario-

based crowd behavior recognition (e.g., fighting, street 

passing), by extracting the crowd features such as crowd 

density and crowd motion dynamics (motion speed, direction, 

etc.). Along with the rising of social networking in recent 

years, some researchers have dedicated to social relationship 

extraction from the captured video sequences. For example, 

Ding and Yilmaz [5] have studied how to identify 

communities and find the leader of each community in video 

sequences, where they use two statistical learning methods to 

derive the affinity between individuals. 

When surveillance cameras are widely deployed in a 

city-wide area and they connect, the combined power can 

help us to solve a series of social challenges, such as traffic 

forecasting and public safety. It has been reported that the 

Memphis city in US has used the CRUSH (criminal 

reduction utilizing statistical history) system developed by 

IBM to monitor the hot spots around the city and predict 

latest crimes [6]. CRUSH works by using a series of crime 

patterns learned from historical crime and arrest data, in 

combination with other factors like weather forecasts, 

economic indicators, and information on events such as 

paydays and concerts. 

B) Smart Indoor Artefacts 

With the development of wireless sensing techniques, 

massive cheap and tiny sensors like RFID and switches are 

deployed to augment everyday objects (i.e., the so-called 

indoor smart artefacts, such as information appliances, smart 

toolboxes, and smart cups [7]) in our daily living 

environments (to build the so-called “smart environments”). 

By analyzing the data from the attached sensors, smart 

artefacts can learn the context information (or extract 

underlying intelligence) in the smart environment and adapt 

its behavior to assist users. 

To serve people well, smart artefacts need to firstly know 

the physical location of things (people and objects) so that 

they can record them and react accordingly. The Active Bats 

is an early system that uses ultrasonic sensors and the 

triangulation location-sensing technique to locate indoor 

objects [8], which enables location-based services like lost-

object finding (e.g., finding a lost key). Human activity 

becomes another “intelligence” that can be learned from 

indoor artifacts. A number of activity recognition systems 

that focuses on accurate detection of human activities based 

on predefined activity models have been developed. For 

example, by embedding temperature and motion sensor into 

a cup, the Mediacup project can report not only the cup’s 

situation, but also cup-relevant human activities, such as the 

cup being drunk from, played with, carried around, and filled 

up by a person [7].  

Analyzing the data from a single smart artefact can 

merely reflect the human activity relevant to the object, 

fusion of the data from a collection of smart artifacts, 

however, can recognize more general human activities. For 

example, Philipose et al. explored techniques to recognize 

tens of human activities by analyzing people’s use-trails of a 

number of RFID-equipped indoor objects, using the hidden 

Markov model (HMM) method [9]. The mined human 

activity information can be exploited to great societal 

benefits, especially in human-centric applications such as 

healthcare and eldercare, as demonstrated in [9, 10]. 

Nevertheless, smart-artifact based activity recognition is 

bounded to sensor-enriched indoor environments. 

C) Wearable Sensors 

The defect of indoor smart artifacts is remedied with the 

presence of wearable sensors, which transform people into 

“mobile” sensors for both personal context and ambient 

environment monitoring. Wearable sensors, such as 

accelerometers, pedometers, heart rate sensors, wireless 

webcams, microphones, are worn on different parts of human 

body to enable various human-centered services, such as 

human activity recognition, routine discovery, and social 

context recognition. 

Researchers have prototyped wearable computer systems 

that use accelerometers, video, and other sensors to 

recognize user activities. For example, Bao et al. developed 

classifiers to detect physical activities (e.g., sitting still, 

standing, walking) from data acquired using five small 

accelerometers worn simultaneously on different parts of the 

body [11]. Instead of using classifiers to recognize a 

predefined set of activities, some other studies attempt to 

find unknown routine patterns (i.e., routine discovery) 

directly from low-level senor data leveraging unsupervised 

models. Huynh et al. introduced the topic model approach 

for modeling and discovering daily routines and implicit 

activity patterns from on-body sensor data [12]. Besides 

human activities, wearable sensors have also been explored 

on detecting the ambient context of a user. For instance, in a 

wearable-camera-based life recording system − Live Life 

[13], HMM technique has been used to learn situated social 

context (walking in the street, having coffee with friends) 

from wearable acceleration sensors and audio sensor. 

D) Mobile Phones 

Although wearable sensors are portable and promising, 

they are still not viewed as a “personal companion”. Things 



 

 

change with the proliferation of sensor-enhanced mobile 

phones, where a number of sensors such as GPS receivers, 

Bluetooth/Wi-Fi, accelerometers, ambient light, and cameras 

are embedded. With these sensors, our phones can now track 

our movements through the physical world; they can record 

our social interactions, store our personal histories, keep tabs 

on our likes and dislikes, and track our Internet content 

consumption, app usage, purchasing behavior, and so on. 

The huge amount of multi-modal data collected from 

people’s daily use of smart phones provide unprecedented 

opportunities to study large-scale human behavior patterns, 

interpersonal interactions, social patterns and urban 

dynamics. 

− Human behavior and social context. As one particular 

type of wearable computer, it is not difficult to 

transplant human activity recognition method into 

mobile phones. The CenseMe project (http:// 

www.cenceme.org/) exploits off-the-shelf smart phones 

to automatically infer people’s presence (e.g., running 

on the street) and then shares this presence through 

social network portals such as Facebook. 

SurroundSense uses a combination of sensed ambient 

light, sound and color information from mobile phones 

to predict the social context/situation (e.g., in a 

bookstore, eating in a restaurant) of their users [14]. 

− Interpersonal interaction. By logging various aspects of 

physical interactions and communication among people 

(e.g., co-location, conversations, call logs) and mining 

user behavior patterns (e.g., place of interests), EI 

nurtures the development of many social network 

services, such as friend recommendation and 

augmented online interaction. For example, the 

FriendSensing application [15] can recommend friends 

to its users by monitoring one’s activities with mobile 

phones, including text messages, phone calls, and 

encounters. 

− Social behaviors. Analyzing the data gathered from 

mobile phones at a community level can provide us 

insight into the underlying relational patterns (e.g., the 

interplay between different physical/social factors) and 

relational dynamics of groups, organizations, as well as 

societies. By taking advantage of the data collected by 

mobile phones, Reality Mining project 

(http://reality.media.mit.edu/) initiated at MIT intends 

to observe and characterize the social behavior of 

individual users and organizations (e.g., friendship, job 

satisfaction). The relationship pattern between the 

entropy of the locations the user visits and the number 

of social ties that user has in the social network was 

investigated by [16]. 

− Human mobility patterns and urban dynamics. 

Observing and modeling human movement in urban 

environments is essential for the planning and 

management of urban facilities and services. However, 

a key difficulty faced by urban planners and social 

scientists is that obtaining massive, real-world 

observational data for human movement is challenging 

and costly [17]. The large-scale sensing data from 

pocketed mobile phones, however, paves a way for 

studying human movements and urban dynamics. An 

interesting study based on the monitoring of 100,000 

mobile phone users, conducted by Northeastern Univ. 

in US, discovered that human trajectory has a high 

degree of spatial-temporal regularity [18]. Real Time 

Rome (http://senseable.mit.edu/realtimerome/), initiated 

by MIT from 2006, is one of the pioneering projects 

that explicitly use mobile phone data to understand the 

dynamics of cities (e.g., movement patterns of people, 

spatial and social usage of streets and neighborhoods). 

− Environment context. The nomadic, participatory, and 

in-situ nature of mobile phone sensing provides a new 

opportunity for environment monitoring. The Campbell 

research group from Dartmouth has done much 

research work on exploring the link between personal 

mobile sensing and public environment monitoring 

(e.g., air pollution distribution in a city) [19]. PEIR 

allows users to explore their own activity patterns and 

how their environmental impact and exposure relate to 

specific locations [20]. 

E) Smart Vehicles and Smart Cards 
Accompanying with the rapid development of mobile 

sensing techniques, the prevalence of sensor-enhanced 

vehicles (e.g., GPS) and smart cards used on public 

transportation systems opens up another window to 

understand the “pulse” of a city. In their paper, Liu et al. 

reported on the use of multiple real time data sources (GPS 

data from taxi and smart card data from bus and metro) to 

understand daily urban mobility patterns and explored the 

relationship for mobility with land use (e.g., hot-spot 

detection), social-economic changes (e.g., prediction of 

residential and working area), underlying temporal and 

spatial dynamics of a city [21]. Kaltenbrunner et al. studied 

spatial-temporal human mobility patterns in an urban area by 

analyzing the amount of available bikes in the stations of the 

public bike sharing service “Bicing” in Barcelona [22]. 

Morency et al. investigated the spatial-temporal dynamics of 

urban public transit network leveraging the ten-month bus 

boarding records collected from a Canada city [23]. 

III. CHARACTERISTICS OF EI 

EI aims at extracting individual behaviors, space contexts, 

and social dynamics from off-the-shelf or emerging smart 

things presented in the last section. The heterogeneous 

sensing sources have different attributes and strengths: 

− Surveillance cameras enable the detection of 

individual/group activities and space context in public 

or critical spots, with a limited coverage. 

− Smart artefacts are mainly deployed and used indoors, 

which is beneficial to infer indoor human activities. 

− Wearable sensors and mobile devices are always user-

centric, thus great at sensing individual activities, 

interpersonal interactions, significant user locations, 



 

 

and public environment contexts in an anywhere, 

anytime fashion. 

− Vehicles and smart cards are two major sources to 

extract human mobility patterns and city dynamics. 

The various smart things weave themselves deeply into 

the fabric of everyday life. The diverse features of them, 

nevertheless, present us unprecedented opportunities to 

understand various aspects of interaction patterns between 

human and real-world entities, incorporating human-object 

interaction, human-environment interaction, and human-

human interaction. These interaction patterns can be further 

elaborated into the three EI intelligence forms – individual 

intelligence, spatial intelligence, and social intelligence – 

identified in this article (see Figure 2). Following we 

characterize the attributes of the three intelligence types. 

 Individual intelligence refers to the ability to 

understand personal contexts and behavior patterns. 

Examples include human/object location, human 

activity recognition, point of interests, daily routine 

patterns, and so on. 

 Spatial intelligence concerns the status information 

regarding to a particular place, or the ambient 

environment context of a person. Examples include 

space semantics (e.g., the logical type of a place, such 

as a “supermarket”), ambient noise levels, space 

statuses (e.g., “occupied”), and so on. 

 Social intelligence goes beyond individual contexts and 

reaches the levels of group and community. The 

objective is to reveal the patterns of interpersonal 

interaction, human mobility, and social behavior, as 

well as the dynamics of urban areas. 

The learned EI can not only, from the micro-scale, 

improves the quality of human life by anticipating user needs 

and environmental changes, but also from the macro-scale, 

provides real time decision support for the crowd as well as 

urban managers. 

 
Figure 2.  The characteristics of embedded intelligence. 

IV. A GENERAL ARCHITECTURE FOR EI EXTRACTION 

Research on EI extraction is in its early age. There is still 

little or no consensus on the intelligence extraction 

architecture. For example, it is not clear what architecture 

components (e.g., a human activity classifier) should be 

placed in local objects and what should run in back-end 

servers. In this section we propose our architectural 

viewpoint on EI extraction, which presents a starting point to 

move the field forward. 

The proposed architecture is shown in Fig. 3, which 

consists of four layers: sensor gateways, privacy 

management and trust maintenance, EI learning, and 

application layer. A split data processing solution is 

explored: part of data processing tasks is performed in smart 

things to achieve “embedded intelligence” (e.g., recognizing 

personal activity on a mobile phone); local-reasoning results 

(sometimes raw sensor data) are transmitted to back-end 

servers for information sharing (e.g., sharing user location 

with his friends) and “collective intelligence” extraction (e.g., 

hot spot detection in a city). This solution can significantly 

reduce the communication cost between clients and back-end 

servers and increase the resilience of the whole network. 

 
Figure 3.  A general EI architecture. 

− Sensor gateways. They implement sensor-specific 

methods to communicate with smart things and provide 

a uniform interface to all components above it. Smart 

things are at the edges of the whole network, and they 

can transmit either raw sensor data or local-processed 

data to back-end servers via sensor gateways. 

− Privacy management and trust maintenance. Because 

privacy is a major concern for personal data sharing, 

this layer provides data anonymization and privacy 

protection mechanisms before the data is released and 

processed. A trust model is also incorporated to ensure 

the trustworthiness and quality of the collected data. 

− EI learning and sharing. This layer applies diverse 

machine learning and logic-based inference techniques 



 

 

to transform the collected low-level single-modality 

sensing data into high-level features and expected EI, 

the focus is to mine the frequent data patterns to derive 

the individual/group behavior, space context, as well as 

social and urban dynamics at an integrated level. The 

collected or extracted EI can be shared and retrieved by 

authorized application entities. 

− Application layer. It includes a variety of potential 

applications and services enabled by the availability of 

EI. We present some of them in detail in Section 5. 

V. INNOVATIVE APPLICATIONS 

Potentialities of varied intelligence offered by smart 

things make possible the development of a wide range of 

applications. Many are the domains and the environments in 

which new applications would likely improve the quality of 

our lives: at home, at work, while traveling, while 

communicating with others, just to name a few. Here we 

present five major application areas. 

A) Mobile Social Networking 

Forging social connections with others is at the core of 

what makes us human. Mobile social networking (MSN) 

aims to improve social connectivity in physical communities 

(i.e., helping people stay in touch anytime, anywhere; 

recommending new connections) by leveraging information 

about people, places, and interpersonal interactions. Social 

Serendipity is one of the earliest MSN studies, which signals 

matching interests between nearby people who do not know 

each other to cue informal, face-to-face interactions [24]. 

When people connect, they influence and persuade. In 

MSN, peer influence becomes more important than ever, 

which offers a wealth of new business opportunities. 

Bottazzi et al. have proposed a place-dependent viral 

marketing solution that supports product advertisement 

distribution (e.g., forwarding promotional messages like 

coupons) among customers and their encounters in stores, 

following the word-of-mouth model [25]. Apps like 

GiveGiFi (http://www.givegifi.com/), let people leave digital 

gifts for purchases at places such as restaurants, hotels, bars, 

stores. Their friends can receive the “surprising” gifts when 

they “check-in” those places through FourSquare (a favorite 

MSN application, available at: http://foursquare.com/) the 

next time. It can be imagined that when all these MSN 

applications are at their disposal, businesses will bring the 

tools of direct-response marketing to physical places. 

B) Real World Search 

The increasing numbers of embedded sensor nodes being 

connected to the Internet makes it possible to observe an 

ever-increasing proportion of real world entities (i.e., people, 

places, events) via a standard Web browser. Unlike Google 

search in the virtual world, a real world search system can 

identify the real-time location, status and profile information 

of real world entities. Much previous work has been done on 

search the location of entities in small-scale, indoor 

environments. For instance, a searching system called MAX 

was built for human-centric, on-demand searching and 

location of physical objects with RFID tags [26] in smart 

homes. Our previous work Home-Explorer explored 

ultrasonic positioning technique to locate indoor objects, 

which particularly concerns the robustness of embedded 

sensors in real-world search [27]. 

Real world search is now moving from indoor 

environments to large-scale environments. As envisioned by 

Google researchers in the Nature magazine [28], search 

contents in the future will cover histories of interactions with 

colleagues, friends, and tracks of sensor readings from GPS 

devices, medical devices and other embedded sensors in the 

physical world. That’s to say, search will be extended to the 

whole society in the coming years. Early practice has been 

started up in Google, such as its real-time traffic condition 

service (http://maps.google.com/). Interesting work has also 

been done by the Sense Networks Inc (http://www. 

sensenetworks.com/). The Citysense application developed 

by this technology company is an innovative mobile 

application that supports real-time hot-spot discovery in 

urban areas, which can answer a compelling question – 

“Where is everybody going right now?” 

C) Life-Logging 

Human memory is fallible – most of us often find it hard 

to recall the details around what we have done and have to be 

done. It often is a serious inconvenience and negatively 

influences our wellbeing and also our performance in the 

workplace. With the development of wearable and mobile 

techniques in recent years, numerous digital lifelogging 

systems that aim to argument human memory through 

suitable means to capture, store, and access our daily life 

experiences (e.g., meeting friends on the road, conversations 

with a business partner) have been developed. Forget-me-not 

[29] is one of the earliest lifelogging systems, which uses a 

PDA to collect its user’s activities (e.g., location of a user, 

encounters) in the form of texts throughout the day. Live 

Life [13] has dedicated to capture of human experiences 

using a wearable camera. It associates collected video data 

with learned human activities and situated social 

environment from wearable acceleration sensors and audio 

sensor, which then can be used as contextual cues to 

augment data retrieval. In summary, we are stepping into the 

era of “the End of Forgetting.” While we outsource memory 

to smart devices, we may free up our brains for other 

information, such as complex social linkages. 

D) Enterprise Computing and Groupware 

Deploying and using of smart things in enterprises can 

facilitate the communication and collaboration among co-

located or non-colocated employees. It can also help us 

understand organizational/societal behaviors in enterprises. 

For example, Microsoft’s SixthSense project uses RFID-

tagged objects/devices to infer a range of enterprise 

intelligence such as the interaction and association between 

people and workplaces, which are then used for enterprise 

services like automatic conference-room booking [30]. Koji 



 

 

et al. use special designed work badges to study the 

relationship between productivity and interpersonal 

interactions in a workplace. The badges contain infrared 

sensors, microphones, accelerometers, and location sensors 

to record the location and duration of conversations between 

workers, their physical distance apart, encounters, upper 

body motions, and so on [31]. 

E) Urban Mobility Systems 

Understanding human movement in urban environments 

has direct implications for the design of future urban public 

transport systems (e.g., more precise bus scheduling, 

improved service to public transport users), traffic 

forecasting (e.g., hot spot prediction), and urban planning 

(e.g., for transit-oriented urban development). There have 

been a number of studies that devote to extract city-wide 

human mobility patterns using large-scale data from smart 

vehicles and mobile phones. MIT’s Real Time Rome project  

uses aggregated data from mobile phones, buses and taxies in 

Rome to better understand urban dynamics in real-time. Liu 

et al. reported that the spatial-temporal patterns of taxi trips 

are essential for a more refined urban taxi system, which 

allows us to control taxi supply according to the travel 

demand in space and time [21]. In [22], the learned spatial-

temporal human mobility patterns enables the improvement 

of public bike sharing services, for example, the user can be 

informed about the best places to pick up or leave the bikes. 

VI. RESEARCH ISSUES 

Let us now turn our attention to key EI research issues. 

Many of these are directly motivated by the EI applications 

discussed earlier. To facilitate the development of EI systems, 

one fundamental issue is the collection and management of 

multi-modal data from different information sources. Other 

important issues include the better use of classifiers in terms 

of complex sensing contexts, and the security and privacy 

concerns raised by sensing and sharing of human daily 

experiences. 

A) Human-Centric Sensing 

EI allows the use of mobile sensing nodes (wearable 

sensors, mobile phones, and vehicles) to contribute data for 

community use (e.g., to sense and share the noise level from 

a particular street), i.e., the so-called “human-centric 

sensing” [19]. Comparing with static sensor networks, the 

involvement of humans as part of sensing infrastructure 

raises several new issues. 

(1) Human roles. What roles should people play in 

human-centric sensing; for example, should they be 

interrupted to control the status (e.g., accept, stop) of a 

sensing task? Two different views were proposed by 

previous studies. The participatory view incorporates people 

into significant decision stages (e.g., deciding which 

application request to accept) of the sensing system. The 

opportunistic view, on the other hand, shifts the burden of 

users by automatically determining when devices can be 

used to meet application requests. There are limitations to 

both of the two views: purely participatory sensing places 

many demands on involved users; while the opportunistic 

approach suffers from the issues like potential leak of 

personally sensitive information and high computation cost 

on decision making (e.g., deciding whether the sampling 

condition is met). Future work should be done on balancing 

the control-load of users and computation-load of mobile 

sensing nodes while integrating proper protection 

mechanisms on data privacy. 

(2) Sensing task assignment and data sampling. In 

human-centric sensing, using of mobile sensors form a 

highly volatile swarm of sensing nodes that can potentially 

provide coverage where no static sensing infrastructure is 

available. However, since there may be a large population of 

mobile nodes, a sensing task must identify which node(s) 

may accept the task. A set of criteria should be considered 

here to filter irrelevant mobile nodes: specification of the 

required region (e.g., a particular street) and time window, 

the acceptance conditions (for a traffic-condition capture task, 

only the phones out of user pocket and with good 

illumination condition can meet the requirement), and 

termination conditions (e.g., sampling period). Some 

preliminary work has been done on this. For example, [32] 

has proposed a task description language called AnonyTL to 

specify sample context for a sensing task. However, further 

efforts need to be done to improve the efficiency of the 

decision making process on task assignment and data 

sampling. 

B) Data Collection, Representation, and Uncertainty 

As in EI system, the data producers can be very different 

in terms of modality (e.g., mobile phones, vehicles, cameras), 

resource capabilities, data quality (high or low), and their 

sharing willingness. The data consumers are also 

heterogeneous in terms of running environments 

(applications that run locally or at community-level remotely) 

and data needs (some might need only high-level context 

information while others might need raw sensor data). The 

heterogeneity leads to several challenges on data 

management. 

(1) The architecture for data collection: centralized or 

self-supported. Heterogeneous sensors are used in EI sensing, 

where some sensors may have almost no computing or 

storage resources, and some others are relatively better off. 

This situation leads to two distinct data collection methods: 

the centralized method transports all the sensor data to a 

resource-rich back-end server to perform all data processing; 

the self-supported method, nevertheless, builds the ability of 

data processing into the device itself. Both approaches have 

benefits as well as drawbacks, and present particular 

challenges and opportunities. For example, the collected data 

from a group of users via the centralized approach offers 

opportunities for group behavior or large-area dynamics 

extraction, but the cost associated with the transport of 

sensor data is high. Though having the advantage of 

providing more scalable solutions, the self-supported 

approach may affect other applications’ execution on the 



 

 

device, mainly due to resource limitations. As reported in 

[33], running a simple Fourier transform on a mobile phone 

can impact other ongoing apps and can run too slowly to 

keep up with the stream of sampled data. Future work should 

consider a hybrid plan that considers the trade-off between 

the cost for on-the-phone computation and the cost for 

wireless communication with back-end servers. For example, 

in the architecture proposed in Section 4, we place part of the 

individual sensing task at the local side, which could produce 

a rather small set of result data to be transmitted to the server 

for community sensing. 

(2) Standards on communication and knowledge 

representation. Sensors come from different platforms vary 

in bandwidth capabilities, connectivity to the Internet (e.g., 

constant, intermittent, or affected by a firewall), and 

connection methods, the sensors might have different 

interfaces to access them. To hide much of this complexity, 

there should better be a standard sensor gateway that 

provides a uniform interface to all components (e.g., EI 

learning layer, applications) above it. Unified method for 

knowledge representation is also important. Raw data from 

different sensor sources should be transformed to the same 

measure metric, represented by a shared vocabulary/ontology 

to facilitate the learning and inference process, as 

demonstrated in previous studies like [34]. 

(3) Data uncertainty. The sensed data involves many 

sources of uncertainty, which may influence the accuracy of 

the subsequent EI extraction process: the embedded sensor 

can be broken or may report error data [27]; the sensing 

environment may generate much noisy data. Taking RFID-

based human activity recognition for example [9], if several 

RFID-equipped objects are placed close to each other, the 

RFID-reader worn on the human body can detect them 

simultaneously, and thus affect the final recognition result. 

Though critical to many pervasive computing applications, 

not much research has been done in the detection and 

recovery aspects of faults or failures in challenging 

environments. Besides, collecting data from anonymous 

participants for EI extraction suffers from the data trust issue, 

if there lacks the control to ensure the source is valid. 

Therefore, certain reputation and guarantee mechanisms 

about the reliability of volunteer reports should also be 

integrated. 

C) Harvesting EI from Low-level Sensing Data 

To understand personal/community behaviors from 

gathered data, a set of classifiers should be explored for EI 

extraction. However, as the data processing task takes place 

out of controlled lab settings and is governed by uncontrolled 

users, many real-world issues arise. 

(1) Lacking of a common model. In EI extraction, the 

number of individual/social behaviors to be detected is very 

large, and they are often performed in idiosyncratic ways in a 

variety of unstructured environments. It is therefore difficult 

to train a generic classification model that works well in 

different contexts. For example, a person can “walk” with 

his/her mobile phone in the hand or in the pocket, which may 

impact the recognition accuracy when a common activity 

recognition model is used. In terms of this, it is better to train 

different classifiers that work in different contexts (even 

work for different users). However, learning from data 

requires labeling; given the large number of behaviors to be 

recognized, the diverse contexts to be considered, and the 

fact that end users are lay persons, it is impractical to expect 

much labeled data. To deal with this problem (i.e., the sparse 

labeled data problem), it is promising to import mature semi-

supervised or evolvable learning techniques. It is also 

attractive to leverage user collaboration/sharing in the data 

labeling process to reduce training time and labeling effort, 

as demonstrated by [19]. 

(2) Complexity and ambiguity. Accurate EI recognition is 

challenging because human activities in daily settings can be 

very complex. Successful research, however, has so far 

focused on recognizing simple individual/group activities, in 

lab environments. The complex nature of human activity, 

however, can pose many new challenges in uncontrolled 

environments. First, people can do several activities at the 

same time, in the same place. For example, you can answer a 

phone call while walk with your friend on the road. There is 

yet little effort on recognizing such concurrent activities. 

Second, similar situations or even the same one can be 

interpreted differently, and thus leads to the issue of 

ambiguity and system inconsistency. For example, the 

“picking up the wallet” action can belong to several activities, 

such as “leaving home” and “cleaning”; a group of co-

located phones could compute different inference result 

about the social situation, such as “in a party” or “in a 

meeting”, due to slight environmental differences. 

Besides the above issues raised by the complex nature of 

individual/group activity, to understand or predict 

human/social behaviors at the community level, we should 

leverage ideas from recent social science and mathematical 

studies. For example, patterns such as power-law/small 

world topology have been found in networks ranging from 

friendships in schools to co-authorship networks in sciences 

[35]. Other techniques and models about large-scale 

networked systems should also been exploited in future EI 

research, such as random graph theory, statistical physical 

studies of complex networks, scale-free networks, just to 

name a few. 

D) Security and Privacy 

An easy to recognize fact is that sharing personal data 

with applications (e.g., contributing data to community-

oriented services like city-wide pollution monitoring) can 

raise significant privacy concerns, with much information 

(e.g., location, point of interests) being sensitive and 

vulnerable to privacy attacks. The new security challenge 

introduced here is that: how to protect the privacy of 

participants while allowing their devices to reliably 

contribute data to community-scale applications. Some 

researchers have focused on using data anonymization 

techniques to conceal the identity of users when they 

contribute data. But anonymous is sometimes not enough, 



 

 

because attackers can still link the identity of the contributor 

from the data he/she reported. For example, a report 

containing Bob’s house as the location where the sensor 

reading was taken can leak information about Bob’s identity. 

People have started to use k-anonymity [19] and spatio-

temporal cloaking [32] to deal with this problem. Besides 

exploiting privacy protection techniques, we should also 

devote to opening debates among viewpoints, policies and 

laws, toward a common understanding of users’ rights to 

control their data and its use. 

VII. CONCLUSION AND FUTURE VISION 

Smart things are transforming humanity. The Embedded 

Intelligence (EI) reviewed in this article represents a new 

computing paradigm and an interdisciplinary research and 

application field. We expect that EI’s scope will continue to 

expand and its applications to multiply. As we have 

discussed, the prevalence and development of EI still face 

challenges ranging from human-centric sensing/sampling, 

heterogeneous data collection and uncertainty management, 

to complex intelligence modeling/learning issues, which are 

expected to nurture a series of new research opportunities for 

academic researchers, industrial technologists, and business 

strategists as well. On the other hand, it is no doubt that the 

development of EI is a double-edged sword. While it is 

making people more connected and our life more convenient; 

it is eavesdropping on us and trespassing on our privacy as 

never before. The future of EI is, in some ways, profoundly 

sobering, even as it augurs infinite possibilities for business. 
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