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Abstract 

The Internet of Things (IoT) represents the future technology trend of sensing, 

computing, and communication. Under this grand vision, the next-generation Internet 

will promote harmonious interaction among humans, objects, and environments. 

Current IoT research is primarily conducted from the perspective of identifying, 

connecting, and managing objects. In this paper, however, we attempt to enhance the 

IoT with intelligence and awareness. By exploring the various interactions between 

humans and the IoT, we extract the “embedded” intelligence about individual, 

environment, and society, which can augment existing IoT systems with user, ambient, 

and social awareness. The characteristics, major applications, research issues, the 

reference architecture, as well as our ongoing efforts to embedded intelligence are also 

presented and discussed. 

Keywords: Internet of things, human-IoT Interaction, embedded intelligence, user 

awareness, ambient awareness, social awareness 

1. Introduction 
The Internet of Things (IoT) refers to the emerging trend of augmenting physical 

objects and devices with sensing, computing, and communication capabilities, 

connecting them to form a network and making use of the collective effect of the 

networked objects. Earlier networked objects include surveillance cameras mounted in 

the city environments and sensor-equipped everyday artifacts (e.g., goods with RFID 

tags) in diverse smart spaces. The emerging categories of IoT devices tend to be mobile, 

which include wearable sensors (e.g., pedometers, biosensors), sensor-enhanced mobile 

phones (e.g., the iPhone), and smart vehicles (vehicles equipped with sensing devices, 

such as GPS devices). 
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Several emerging technologies have contributed to the proliferation of IoT in recent 

years. Radio Frequency Identification (RFID), Near Field Communication (NFC) and 

Wireless Sensor and Actuator Networks (WSAN) have developed as atomic 

components of IoT, enabling auto-identification and interconnection of objects [3, 39, 

42]. Service-oriented computing [7, 11] and Web 3.0 (or Semantic Web) [32, 38] 

technologies facilitate the development of applications and sharing of legacy 

information. They work at the middleware layer of IoT systems to hide the details of 

different technologies in IoT infrastructures. Cloud computing enables developers to 

offload services to backend servers, providing unprecedented scale and additional 

resources for computing over large-scale sensor data obtained from widely deployed 

IoT devices [54, 55]. The Web of Things (WoT) integrate Web and sensing 

technologies together by reusing existing Web standards (e.g., URI, HTTP, REST) so as 

to extend the eco-system of smart objects and enrich the contents provided to users [24]. 

So far the main research efforts on IoT have been conducted primarily from the 

perspective of managing objects and resources, ranging from object 

identification/networking, data access, to object control. This paper, however, attempts 

to enhance the IoT from the perspective of extracting intelligence and knowledge 

leveraging the interaction of human and objects. Instead of focusing on connecting and 

managing smart objects, we emphasize on bringing awareness and enhancing 

intelligence to the IoT system by analyzing the interactions between humans and smart 

objects (e.g., passing by street cameras, carrying mobile phones, and commuting in 

smart vehicles). In [61], Zhong et al. propose the Wisdom Web of Things (W2T) vision, 

which represents a holistic intelligence methodology for realizing harmonious 

interaction among humans, computers, and things in the hyper world. The hyper world 

is a combination of the social world, the physical world, and the cyber world. Our work 

is under this pioneering vision, and particularly studies the harmonious interaction 

between human and IoT devices in the coming hyper world. To implement the W2T 

vision, W2T further presents the “things-data-knowledge-services-human-things” data 

cycle. Our study focuses on human-IoT interaction data processing, majorly falling into 

the “data to knowledge/intelligence” transformation stage in the W2T data cycle. We 

investigate different ways of human-IoT interaction, and explore different kinds of 

knowledge and intelligence that can be extracted from the historical interaction data.  
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More specifically, we aims to study how the IoT reveals high-level knowledge about 

individuals (e.g., user A’s preferences), groups of people (e.g., the relationship between 

users A and B), and society (e.g., hotspots or areas of unrest in a city) by analyzing the 

digital traces (e.g., video captured, call logs, GPS trajectories) left by people while 

interacting with the IoT. High-level knowledge cannot be obtained directly from IoT 

devices; instead, it is derived indirectly from raw sensing data using advanced data 

mining and machine learning techniques. We call the knowledge learned from human-

IoT interaction “embedded intelligence (EI),” which refers to the knowledge about 

human life, ambient dynamics, and social connection/interaction. A considerable 

variety of innovative applications can be enabled by EI-enhanced IoT, in areas such as 

real-world search, social networking, enterprise management, community sensing, 

intelligent transportation, and so on. We use a simple scenario to illustrate concrete 

ideas about EI in the IoT. 

The scenario places itself in the context of an urban environment. Chen is a 

university student in Beijing. He lives a little far from the campus and usually travels to 

the university by bike or public transportation. The mobile phone has become his 

personal companion, enabling him to connect with his friends anytime, anywhere. 

Taking advantage of the capability of existing IoT (or pre-EI) systems, we can 

determine where Chen is, who he has encountered, and where the next bus is. All this 

information can be retrieved from sensor readings in GPS and Bluetooth logs. By 

analyzing the collected digital traces to extract EI from the IoT (i.e., in the post-EI era), 

however, we can infer high-level knowledge about Chen and the community. His 

activity (e.g., walking on the street), his interests (e.g., points of interest learned from 

his location trails), his relationship with others (predicting which encounter may be his 

friend), and the traffic dynamics in the city (e.g., detecting hotspots and traffic jams in 

Beijing using citywide vehicle and mobile phone data), among others, can be deduced. 

Advanced human-centric services can be enabled using the derived EI information, 

such as traffic planning and friend recommendation. 

There are several closely related research areas that are interleaving with EI, i.e., 

ubiquitous intelligence [37], brain informatics [58, 62], Web intelligence [59, 60], social 

computing [52], and reality mining [16, 17]. Compared to EI, ubiquitous intelligence 

highlights the context-awareness feature of individual objects, it does not target at the 
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study of aggregated intelligence (e.g., social interaction patterns) from large-scale 

objects. Brain informatics also studies human behaviours, leveraging various powerful 

techniques, such as fMRI, eye tracking, and EEG [62]. EI, however, aims to understand 

human behaviours from their daily interaction with smart objects. Both Web 

intelligence and social computing devote to Web data understanding, but the latter one 

focuses on the analysis of human interaction and social behaviours from social websites. 

Comparing with them, EI addresses the understanding of human behaviours in the 

physical world. While reality mining studies the relationship between people, EI 

extends its scope from social tie measurement to individual and urban sensing. Further, 

instead of using merely mobile phones for reality mining, EI aggregates the information 

from various IoT devices, including static infrastructure, mobile phones, vehicles, and 

so on. This paper attempts to depict a picture about EI under the W2T vision. More 

specifically, it aims to: 

 present the categories of IoT devices that EI is embedded into and the 

characteristics of EI; 

 illustrate the major benefits of EI in everyday life and analyze the major research 

challenges faced by the scientific community; 

 propose a reference architecture about how to derive EI in IoT systems and describe 

our ongoing practice to EI. 

  Our work on EI is particularly useful to understand the importance of information 

processing and intelligence extraction in the W2T data cycle. The definition and usage 

of EI is human-centric, demonstrating the harmonious-interaction view over human, 

computers, and things in W2T. We also study how the extracted knowledge and 

intelligence of EI can bring to the existing IoT systems in terms of awareness, and how 

they will nurture novel W2T applications. 

2. Embedded Intelligence: A Research Overview 
The terminology “embedded intelligence” is not new. It was used early by Schoitsch et 

al. in 2006 [48], where embedded intelligence is characterized to span the gap between 

sensor networks and applications in smart environments (e.g., autonomous systems, 

assistant living systems, personal robots). The term also appeared in Jedermann et al.’s 

work [29], by exploring the advantages of introducing RFID-enhanced objects in 
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logistics. Comparing with them, the “meaning” of embedded intelligence (EI) is refined 

and extended from two aspects in our work: (1) EI is a human-centric concept, aiming 

to understand human behaviours from their daily interaction with smart objects; (2) with 

the prevalence of mobile and wearable devices, the scope of EI goes beyond individual 

smart environments to large-scale community and urban environments, and many novel 

applications are enabled (e.g., urban planning, community sensing).  

Research on extracting EI (i.e., harvesting knowledge about human behaviors, 

ambient dynamics, and social interaction) from the digital traces of human-IoT 

interaction is still in its infancy. Although there is still not a clear definition that 

addresses this research direction in the IoT community, the initial form of EI has 

already been explored in several categories of IoT devices. This section presents an 

overview of related research on EI as explored in six typical sources, with each source 

corresponding to a traditional or emerging category of IoT device. 

2.1. Surveillance Cameras 

A surveillance camera forms part of a static sensing infrastructure, which is an early 

type of static sensor that is widely deployed in urban environments (e.g., public or 

critical spots in the city). We use the surveillance camera as an example to illustrate 

how a network of static sensors can sense human activity or interaction. 

Ongoing human activities within an area can be determined by analyzing the scenes 

captured by a fixed surveillance camera at a certain location. For example, Saxena et al. 

[47] developed a video-based system that recognizes crowd behaviors (e.g., fighting, 

street passing) in public places. By analyzing interpersonal interaction patterns, 

researchers have also studied the social relationship among co-located people. For 

example, Ding and Yilmaz [14] determined how to identify groups and distinguish the 

leaders of each group from video sequences. The authors used two statistical learning 

methods to derive the affinity between individuals. 

The combined power of surveillance cameras widely deployed and networked in a 

city can help solve a series of social challenges, such as traffic forecasting and public 

safety protection. For instance, Memphis in the US uses the CRUSH system, developed 

by IBM, to monitor the hotspots around the city and predict crimes 

(http://www.memphispolice.org/). CRUSH works using a series of crime patterns 
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learned from historical crimes and arrest data, in combination with other factors such as 

weather forecasts, economic indicators, and information on events, such as paydays and 

concerts. 

2.2. Smart Indoor Artefacts 

With the development of wireless sensing techniques, widely available inexpensive and 

tiny sensors (e.g., RFID tags) are deployed to enhance the performance of everyday 

objects (i.e., smart artifacts [49], such as smart tables, smart cups, etc.) in daily living 

environments. Because many of our daily activities involve interaction with everyday 

objects, human activity becomes an important high-level context that can be learned 

from human-artifact interaction. When only one smart artifact is used, we can detect 

simple activities relevant to that object. For instance, in the MediaCup project [6], cup-

specific human activities, such as drinking and water adding, can be recognized by 

interpreting the data from a sensor-equipped cup. By contrast, when a collection of 

smart artifacts is deployed in a smart environment, more complex human activities can 

be detected by referring to interactions with a series of objects. For example, Philipose 

et al. [45] have explored HMM techniques to recognize tens of household activities 

(such as preparing food, washing clothes, etc.) by analyzing people’s use-trails of a 

number of RFID-equipped indoor objects. The mined human activity information is 

beneficial to society, especially in the healthcare and eldercare domains. However, 

smart-artifact based activity recognition is restricted to closed-instrumented 

environments [28]. 

2.3. Wearable Sensors 

The defect of indoor smart artifacts is remedied with the presence of wearable sensors 

(e.g., accelerometers, pedometers, microphones). Wearable sensors are worn on 

different parts of the human body to enable human-centric sensing anytime, anywhere. 

The sensors extract a number of high-level contexts, such as human activity, daily 

routines, and social situations, about sensor wearers. Bao et al. [5] developed classifiers 

for detecting physical activities (e.g., sitting still, standing, walking), which are detected 

from the data acquired by five small accelerometers worn on different parts of the body. 

Instead of using classifiers to recognize a predefined set of activities, some researchers 

have attempted to find unknown activity patterns (i.e., discovery of routines) without 
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any predefined models or assumptions. For instance, in [28], a topic model-based 

approach is proposed to identify daily routines, such as shopping or commuting, from 

the raw sensing data collected by body-worn accelerometers. Wearable sensors that 

detect the social situations of users (e.g., having a meeting, having coffee with friends) 

have also been explored [30]. 

2.4. Mobile Phones 

Although wearable sensors are portable and promising, they are still not widely used as 

“personal companions” in daily life. Things change with the proliferation of sensor-

enhanced mobile phones, in which a number of sensors, such as GPS receivers, 

Bluetooth/Wi-Fi, accelerometers, ambient light, and cameras, are embedded. With these 

sensors, phones can track movements (of users) in the physical world, monitor 

preferences, track Internet content consumption, and so on. The huge volume of multi-

modal data collected from the daily use of smart phones provides unprecedented 

opportunities to study individual/social contexts and ambient dynamics. 

 Human activity. As one particular type of wearable/portable device, a mobile phone 

sensing system can easily be incorporated with a human activity recognition 

method, as demonstrated by the CenceMe application on the iPhone [10]. 

 Space semantics. Locating a person in the physical world using GPS-equipped 

mobile phones is easy. However, a GPS does not work indoors. Instead of 

deploying cumbersome sensing infrastructure (e.g., ultrasonic sensors [27], RFID 

tags [56]) to enable indoor positioning, researchers have investigated a simple 

mobile phone-based method to identify in which type of space a user is located.  

For example, SurroundSense uses a combination of sensed ambient light, sound, 

and video data from mobile phones to predict the semantics (e.g., bookstore, 

restaurant) of user location [4]. 

 Social relationships. By logging various aspects of physical interactions and 

communication among people (e.g., co-location, conversations, call logs) and 

mining user behavioral patterns (e.g., places of interest), mobile phones can be used 

to analyze and predict social relationships among people. For example, the Reality 

Mining project of MIT can infer 95% of friendships on the basis of observational 

data from mobile phones [17]. 
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 Human mobility patterns. Observing and modeling human movement in urban 

environments are essential for the planning and management of urban facilities and 

services. However, a key difficulty confronting urban planners and social scientists 

includes the challenge and cost of obtaining large-scale and real-world 

observational data on human movement. The massive volume of sensing data 

collected from mobile phones, however, paves the way for studying large-scale 

human movement patterns (e.g., where people often go at 9:00 pm in Tokyo). For 

example, an interesting study based on the monitoring of 100,000 mobile phone 

users, conducted by Northeastern University in US, revealed that human movement 

has a high degree of spatio-temporal regularity [21].  

 Ambient contexts. The nomadic and in-situ nature of mobile phone sensing provides 

a new opportunity for ambient context sensing (e.g., air quality level of a street). 

For example, the BikeNet application measures several metrics to provide a holistic 

picture of cyclist experience, including the CO2 level along a bike path [18]. 

2.5. Smart Vehicles and Smart Cards 

Along with the rapid development of mobile phone sensing systems, the prevalence of 

sensor-enhanced vehicles (e.g., GPS) and smart cards used in public transportation 

systems opens another window for understanding the pulse of a city. Liu et al. [35] 

reported the use of multiple real-time data sources (GPS data from taxis and smart card 

data from buses) to understand daily urban mobility patterns and traffic dynamics (e.g., 

hotspot detection). Morency et al. [41] investigated the spatio-temporal dynamics (e.g., 

examining the effects of weather on transit demand) of public transit networks, 

leveraging the 10 month bus boarding records collected from a city in Canada. 

3. Characterization of Embedded Intelligence 
Each of the above-mentioned sensing sources has strengths and limitations in capturing 

the full spectrum of EI. To exploit the rich intelligence embedded in the IoT and support 

diverse applications, heterogeneous sensing sources with different capabilities should be 

aggregated to extract the distinct dimensions of EI. This section begins with a 

characterization of diverse IoT sources in terms of sensing style and coverage. We then 

present three different interaction schemes between humans and the IoT. We also 

elaborate on how these interaction schemes lead to the three dimensions of EI. 
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3.1. Diversity on Sensing Style and Coverage 

In terms of the relationship between IoT devices and human community, we identify 

two distinct styles of smart object sensing (Figure 1). 

− Object-centric (third-person) style. Smart objects belonging to this type are 

deployed in the real world. They can detect the changes in their physical status as 

well as changes in the surrounding environment. This sensing style does not link a 

sensing device to a particular person; the device observes the world changes within 

its range of perception like third-person observers. Surveillance cameras and smart 

indoor artifacts belong to this type. 

− Human-centric (first-person) style. Smart objects belonging to this type serve as 

personal companions (e.g., worn on or attached to the human body, carrying human 

when they travel). Its placement or location in relation to the user enables the object 

to share the first-person perspective of the user, and continuously senses user 

contexts, such as his/her physical activities, daily encounters, and location trails, as 

well as the situation in which he is immersed. All the other types of IoT devices 

presented in Section 2, such as wearable sensors, mobile phones, smart vehicles, 

and smart cards, belong to this category. 

In addition to sensing style diversity, heterogeneous sensing sources also differ from 

one another in terms of coverage capability. The word “coverage” has two meanings:  

geographical coverage (geo-coverage) and logical coverage. 

 
Figure 1 Diversity in sensing style and coverage of distinct IoT devices. 
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− Geo-coverage pertains to the area covered by a sensing device. Object-centric 

sensing devices are usually restricted to specific areas. For example, surveillance 

cameras are installed in a critical spot for small-area monitoring. Human-centric 

devices break through coverage boundaries by extending the coverage to the scale 

of a town or city. For example, vehicles and smart cards can predict human 

mobility patterns in an urban area. 

− Logical coverage, in simple terms, stitches together geo-coverage observations 

along multiple abstract dimensions: spatial, temporal, social, and so on. Figure 1 

shows that although diverse categories of IoT devices have shared features, they 

also possess distinct strengths with respect to the logical/semantic data (e.g., human 

activities, space semantics) that can be learned from them (detailed in Section 2). 

Wearable and mobile sensors have the largest logical coverage among the referred 

sensing sources. 

3.2. Three Dimensions of Embedded Intelligence 

Various IoT devices are weaved deeply into the fabric of everyday life. The diverse 

features of these devices present unprecedented opportunities to understand the aspects 

of interaction between humans and real-world entities. We characterize these 

interactions as human-object, human-environment, and human-human interactions. 

These interaction patterns can be further elaborated into the three distinct dimensions of 

EI, namely, user awareness, ambient awareness, and social awareness (as illustrated in 

Figure 2). We characterize the attributes of the three dimensions as follows. 

 User awareness refers to the ability to understand personal contexts and behavioral 

patterns. Examples include human location, human activity, and daily routine 

patterns. 

 Ambient awareness concerns status information on a particular space, which ranges 

from a small space to a citywide area. Examples include space semantics (i.e., the 

logical type of a place, such as a restaurant), ambient contexts, and traffic dynamics 

(e.g., traffic jams, hotspots). 

 Social awareness goes beyond personal contexts and extends to group and 

community levels. The objective is to reveal the patterns of social interaction (e.g., 

group detection, friendship prediction, situation reasoning), human mobility, etc. 
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Figure 2 Three dimensions of EI 

The three dimensions of EI function at distinct scales. At the micro-scale, the 

aggregated power of the dimensions improves the quality of human life by anticipating 

user needs and environmental changes. At the macro-scale, these dimensions provide 

real time decision support for crowds, social scientists, and urban managers. As a new 

research area, the semantic data (high-level contexts, patterns, etc.) covered by the three 

EI dimensions are expected to expand (going far beyond the eight types summarized in 

Figure 1) in the coming years. 

In W2T, harmonious symbiosis among humans, computers, and things in the hyper 

world is the major concern. Our work is under the W2T vision, and from the view of 

W2T data cycle, EI fits into the “data to knowledge/intelligence” transformation stage. 

In W2T, “data” is considered as the bridge to connect cyber, social and physical worlds. 

Data is also crucial for EI, where the hidden intelligence are mined from the “data” 

collected in human-IoT interactions. EI can be viewed as a significant research direction 

under the W2T framework, with the aim of exploring the characteristics, technologies, 

and potential challenges of intelligence extraction from large-scale human-IoT 

interaction, to enable novel and intelligent W2T applications. In the following sections, 

we will further present the EI enabled application areas as well as the challenges faced 

by it. 



12 

4. Application Areas 
In addition to traditional IoT application areas, such as transportation and logistics, 

healthcare, and smart environments, among others, EI has the potential to significantly 

enhance IoT systems, at least in the following application domains. 

4.1. Real-World Search 

The increasing number of embedded sensor nodes connected to the Internet enables the 

observation of an ever-increasing proportion of real-world entities (i.e., people, places, 

events) via a standard Web browser. Previous studies have focused on searching the 

location of entities in small-scale and indoor environments. For instance, a search 

system called MAX was built for human-centric, on-demand searching and location of 

physical items with the RFID tags [56] in smart homes.  

Real-world search is now moving from merely location reporting to high-level 

human context extraction and retrieval. As envisioned by Google researchers in 

Nature magazine [43], search contents in the future will cover histories of social 

interactions with colleagues or friends, and track city hotspots from GPS devices. 

Google initiated this practice with its real-time traffic condition service [22]. Sense 

Networks Inc. (http://www.sensenetworks.com/) has also conducted interesting work. 

Citysense [44], a mobile application developed by this company, supports real-time 

discovery of hotspots in urban areas. 

4.2. Lifelogging 

Human memory is fallible. Most people often find the details around what they have 

done and what they have to do difficult to recall. The failure to remember is a serious 

inconvenience and negatively influences well-being and performance in the workplace. 

With the advent of wearable and mobile devices in recent years, numerous digital 

lifelogging systems that aim to augment human memory through suitable means to 

capture, store, and access daily experiences (e.g., meeting friends on the road, having 

lunch in a restaurant) have been developed. Microsoft’s MyLifeBits [20] is a pioneering 

lifelogging project, dedicated to capturing the complete human experience through a 

wearable camera and an audio recorder. Cyber-I [36] aims to build a counterpart of each 

person in the cyber world that can intelligently process individual experience data and 

help people in need. The complete capture of people’s lives can bring much noisy data 
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that may never be retrieved, thereby increasing user effort in data retrieval. Thus, 

lifelogging system designers now focus on the capture of selected scenes that are 

important to users. For example, the Social Contact Manager (SCM) that our group 

developed is a scene-specific lifelogging system [26]. It can capture the social 

interaction contexts (using mobile phones) between a person and his/her contacts, and 

support associative retrieval of the contacts in name-slipping situations using auto-

gathered contextual cues (e.g., when/where/with whom was the contact met). 

4.3. Mobile Social Networking 

Forging social connections with others is the core of what makes us human. Mobile 

social networking (MSN) aims to improve social connectivity in physical communities 

by leveraging the information detected by mobile devices. Social Serendipity is one of 

the earliest MSN studies, in which matching interests among nearby people who do not 

know one another are indicated as a cue for informal, face-to-face interactions [15]. The 

CenceMe project exploits off-the-shelf smart phones to automatically infer human 

activity (e.g., walking on the street, dancing at a party with friends), and then shares this 

information through social network portals (e.g., Facebook) [10]. Li et al. [34] proposed 

a friend recommendation approach that mines similarities among users (e.g., points of 

interest) on the basis of their location histories, collected from GPS-equipped mobile 

phones. 

4.4. Enterprise Computing 

Deploying and using smart objects in enterprises facilitate communication and 

collaboration among co-located or non-co-located employees. The use of smart objects 

can help us understand organizational and societal behaviors in enterprises. For 

example, the SixthSense project of Microsoft [46] uses RFID-tagged objects/devices to 

infer a range of enterprise intelligence, such as the interaction and association between 

people and workplaces. The collected data are then used for enterprise services, such as 

automatic bookings of conference rooms. Ara et al. [2] used specially designed work 

badges to study the relationship between productivity and interpersonal interactions in a 

workplace.  

4.5. Urban Planning 
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Understanding human movement in urban environments has direct implications for the 

design of public transport systems (e.g., more precise bus scheduling, improved services 

for public transport users), traffic forecasting (e.g., hotspot prediction), and route 

recommendation (e.g., for transit-oriented urban development). A number of studies 

have extracted citywide human mobility patterns using large-scale data from smart 

vehicles and mobile phones. The Real Time Rome project of MIT uses aggregated data 

from buses and taxies to better understand urban dynamics in real-time [9]. Liu et al. 

[35] reported that the spatio-temporal patterns of taxi trips are essential for a more 

refined urban taxi system, which enables the control of taxi supply according to travel 

demands in space and time.  

4.6. Community Sensing 

Community sensing [31] pertains to the monitoring of large-scale phenomena (e.g., air 

pollution map of a city) that cannot easily be measured by a single individual, but by the 

active involvement of many citizens (during their daily commutes in the city). 

Community sensing leverages the mobile nature of humans and the existing or 

emerging sensing capabilities of mobile/wearable devices, such as sound sensors, air 

quality sensors, and so on. For instance, the MIT Owl project [50] takes advantage of 

the network of smart phones equipped with GPSs, compasses, and directional 

microphones to assess owl populations in a huge region. By sensing the CO2 and noise 

levels along a cycling path, the Bikenet application enables multiple users to share and 

merge individually collected data to create the pollution and noise maps of their city 

[18]. By analyzing the large number of geo-tagged Twitter messages posted from GPS-

equipped mobile devices, Lee et al. has proposed a method to detect unusually crowded 

places (e.g., a fireworks festival in a park) [33]. 

5. Key Challenges and Concerns 
Developing the potential benefits offered by EI poses a number of challenges and 

concerns, many of which are motivated directly by the applications discussed earlier. In 

facilitating the development of EI in IoT systems, a fundamental issue is the collection 

and management of multi-modal data from different data sources. Other important 

issues include better use of classifiers in terms of complex sensing contexts, as well as 
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the privacy and economic concerns raised by the detection and sharing of human daily 

experiences. 

5.1. Sensing with Human Participation 

EI can task deployed mobile sensing nodes (e.g., wearable/mobile devices, vehicles) to 

contribute data for community use (i.e., community sensing in Section 4.6; real-world 

search and urban planning applications also explore community sensing data). 

Compared with traditional static, centrally controlled sensor networks, the involvement 

of mobile human volunteers in gathering, analyzing, and sharing local knowledge in an 

interactive sensing infrastructure raises new issues. 

(1) Human roles. The roles people play in community sensing need clarification. An 

example is whether they should be interrupted to control the status (e.g., acceptance, 

execution) of a sensing task. Previous studies have proposed two different views. The 

participatory view explicitly incorporates people into the task processing stage (e.g., 

deciding which application request to accept, capturing and interpreting the data 

required) [8]. Conversely, the opportunistic view shifts the burden of users by 

automatically determining when the devices can be used to satisfy application requests 

[10]. There are limitations to the two perspectives. Purely participatory sensing places 

many demands on involved users, whereas the opportunistic approach, although more 

autonomous, suffers from issues such as potential leak of sensitive personal information 

and high computation costs incurred from decision making (e.g., deciding whether the 

sampling condition is satisfied). Future work should involve balancing the control load 

of users and computation load of mobile sensing nodes. Similar to Ganti et al. [19], we 

envision future community sensing to span a wide spectrum of user involvement, with 

participatory and opportunistic sensing at the two ends. The proportion of human 

involvement, however, will depend on application requirements and device/network 

capabilities. 

(2) Sensing task assignment and data sampling. In community sensing, using mobile 

sensors from a highly volatile swarm of sensing nodes can potentially provide coverage 

where no static sensing infrastructure is available. Nevertheless, because of a potentially 

large population of mobile nodes, a sensing task must identify which node(s) may 

accept a task. A set of criteria should be considered in filtering irrelevant nodes: the 
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specification of a required region (e.g., a particular street) and time window, acceptance 

conditions (for a traffic-condition capture task, only the phones out of user pockets and 

with good illumination conditions can satisfy requirements), and termination conditions 

(e.g., sampling period). Some preliminary studies on these issues have already been 

initiated. For example, in [12], a task description language called AnonyTL was 

proposed to specify the sample context for a sensing task. However, improving the 

efficiency of the decision making process in task assignment and data sampling 

necessitates further efforts. 

5.2. Data Collection and Representation 
As in EI-enhanced IoT systems, data producers can be very different in terms of 

modality (static or mobile), resource capabilities, data quality (high or low), and sharing 

willingness. Data consumers are also heterogeneous in terms of running environments 

(applications that run locally or at community level remotely) and data needs (some 

need only high-level context information, while others need raw sensor data). 

Heterogeneity brings forth several challenges for data collection and management. 

(1) Architecture for data collection: centralized or self-supported. IoT systems use 

heterogeneous sensors, in which some sensors may not have computing or storage 

resources while others have relatively better functionalities. This situation gives rise to 

two distinct data collection methods: The centralized method transports all sensor data 

to a resource-rich backend server to perform data processing, whereas the self-supported 

method endows the device itself with the ability of data processing. The Maui project 

[13] uses the centralized method, which advocates the use of clouds for performing all 

data processing tasks while building only a thin layer on the phone itself. The activity 

recognition tasks of CenceMe [10], are performed on the phone (i.e., the self-supported 

method). Both approaches have benefits as well as drawbacks, and present specific 

challenges and opportunities. For example, the data from a group of users collected via 

the centralized approach offers opportunities for group behavior or large-area dynamics 

extraction, but the cost associated with the transport of sensor data is high. Although the 

self-supported approach presents the advantage of providing more scalable solutions, it 

may affect the execution of other applications in the device because of resource 

limitations. Future work should consider a hybrid plan that considers the trade-off 
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between the cost for on-the-phone computation and that for wireless communication 

with backend servers. 

(2) Standards for communication and knowledge representation. Leveraging the 

sum of data from widely deployed sensors is a key enabler of EI. However, accessing 

data from distinct IoT devices can be a technical challenge. Sensors come from different 

platforms vary in bandwidth capabilities, connectivity to the Internet (e.g., constant, 

intermittent, or affected by a firewall), and connection methods (3G, WiMax, etc.); the 

sensors might have different access interfaces. To hide much of this complexity, there 

should better be a standard approach that can provide a uniform interface for collecting, 

sharing, and querying sensory data from IoT devices. Some efforts are ongoing. For 

example, the OGC Sensor Web Enablement (SWE) [51] is devoted to building a unique 

framework of open standards (e.g., XML, Web Service, IEEE 1451) for exploiting 

Internet-connected sensors of all types. Similarly, the SenseWeb project [23] of 

Microsoft presents an infrastructure for shared sensing using standardized web service 

APIs. The unified method for representing the high-level contexts extracted from raw 

sensing data is another important factor. A shared semantic framework should be 

introduced to facilitate EI representation and retrieval, as demonstrated in ontology-

based studies [25, 53].  

5.3. Uncertainty Handling 

The sensed data from IoT systems have many sources of uncertainty, which may 

influence the accuracy of subsequent data processing. For instance, embedded sensors 

can be broken or may report error data, and the sensing environment may generate a 

considerable volume of noisy data. Taking RFID-based human activity recognition for 

example [45], if several RFID-equipped objects are placed close to each other, the 

RFID-reader worn on the human body can detect them simultaneously, consequently 

affecting the final recognition result. Although the detection and recovery aspects of 

faults or failures in challenging environments are critical to many IoT applications, little 

research has been done on these issues. 

The involvement of human participation in community sensing also brings forth 

certain uncertainties to EI extraction. For example, anonymous participants may send 

incorrect or even fake data to a data center. The lack of control over ensuring source 
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validity and information accuracy can lead to data credibility issues. Therefore, trust 

maintenance and abnormal detection methods should be developed to determine the 

trustworthiness and quality of collected data. 

5.4. Learning Complexity and Model Selection 

Understanding the individual and group behaviors in gathered IoT data necessitates the 

exploration of a set of classifiers. However, many real-world issues arise when data 

processing task takes place out of controlled lab settings and is governed by 

uncontrolled users. 

(1) Lack of a common model. Humans behave in idiosyncratic ways under a variety 

of unstructured environments. It is therefore difficult to train a generic classification 

model that works well in different contexts. For example, a person can walk with 

his/her mobile phone in hand or in his/her pocket, which may affect recognition 

accuracy when a common activity recognition model is used. In this context, training 

different classifiers that work in varied contexts (or even work for different users) is a 

more efficient approach. However, learning from data requires labeling; given the large 

number of behaviors to be recognized, the diverse contexts to be considered, and the 

fact that end users are lay persons, it is impractical to expect much labeled data. The 

importation of mature semi-supervised or evolvable learning techniques is a promising 

solution to this problem (we call it the sparse data labeling problem). Leveraging user 

collaboration/sharing in the data labeling process also hold promise for reducing 

training time and labeling effort, as demonstrated in [40]. 

(2) Complexity and ambiguity. The accurate extraction of EI information is 

challenging because of the complexity of daily settings. Successful research on human 

activity recognition, for example, has thus far focused on recognizing simple 

individual/group activities in lab environments. Many new challenges, however, emerge 

in uncontrolled environments. First, people can engage in several activities 

simultaneously in the same place. For example, a person can answer a phone call while 

walking with a friend along a street. Little effort has been devoted to recognizing such 

concurrent activities. Second, similar situations or even the exact one can be interpreted 

differently. Various interpretations lead to ambiguity and system inconsistency. For 

example, “picking up the wallet” can be classified under several activities, such as 
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“leaving home” and “cleaning.” A group of co-located phones can compute different 

inference results about a social situation, such as “in a party” or “in a meeting,” because 

of slight environmental differences. 

Other than the issues raised by the complex nature of individual or group activities, 

understanding and predicting human behavior and interaction at the community level 

can be facilitated by the findings of recent social science and physical studies. For 

example, patterns such as power-law/small world topology have been found in networks 

that range from friendships in school to co-authorship networks in the sciences [1, 42]. 

Other techniques and models about large-scale network systems should also be 

exploited in future EI research, such as random graph theory, scale-free networks, and 

so on. 

5.5. Privacy Concerns 
The sharing of personal data in applications (e.g., contributing data to community 

services, such as citywide pollution monitoring) can raise significant privacy concerns, 

with information (e.g., location, point of interests) being sensitive and vulnerable to 

privacy attacks. The new security challenge introduced here is the protection of the 

privacy of participants while allowing their devices to reliably contribute data to 

community-scale applications. Some researchers have focused on using data 

anonymization techniques to conceal the identity of users when they contribute data. 

However, anonymity is sometimes insufficient because attackers can still link the 

identity of the contributor to the reported data. For example, a report containing the 

house where a sensor reading was taken can leak information about the identity of the 

homeowner. Researchers have started using k-anonymity and spatio-temporal cloaking 

[10] to address this problem. Nevertheless, protecting privacy should not be limited to 

technical solutions, but should encompass initiating debates and proposing 

considerations about policies and regulations toward a common understanding of the 

rights of users to control and use their data. 

5.6. Economic Concerns 

EI offers immense potential to consumers and service providers. However, for these 

innovations to evolve from ideas to tangible products for the mass market, many 

commercial issues require resolution. In data sharing among peers (e.g., for the data 
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collected from personal devices for a community sensing purpose), the development of 

a solid economic model is highly important. This issue is even more critical when the 

devices (e.g., mobile phones, wearable sensors) have very limited resources, such as 

energy and storage capacity. Although enforcing cooperation and social connection can 

be the catalyst for this paradigm, additional strategies for incentives and reputation for 

data contributors are needed. Some ideas from the economic-relevant solutions devised 

in traditional P2P platforms and ad hoc networking systems can aid the resolution of 

this issue. 

6. A Reference Embedded Intelligence Architecture 
Based on the elaboration and discussion of EI, we propose a reference architecture to 

illustrate the key functional blocks of an EI-enhanced IoT system. It is intended to be 

the starting point that advances this new research area. We are also practicing the key 

ideas of the reference architecture in our ongoing EI related projects, which will then be 

presented. 

6.1. The EI Architecture 

Figure 3 shows the proposed architecture, which consists of five layers: sensing and 

local processing, data collection infrastructure, data aggregation and intelligence 

extraction, knowledge sharing, and applications. Instead of a purely centralized or self-

supported method, a Hybrid Data Processing (HDP) solution is provided. We allow part 

of data processing tasks performed in smart objects to achieve local perception (e.g., 

recognizing personal activity on a mobile phone); local-reasoning results (sometimes 

raw sensor data) are transmitted to backend servers for group/community knowledge 

discovery (e.g., hotspot detection in a city) and information sharing (e.g., sharing 

current user activity with friends). The HDP solution significantly reduces the 

communication cost between clients and backend servers, and increases the resilience of 

the entire network. Our solution is similar to the split-design strategy used in the Darwin 

system, which advocates the splitting of data processing tasks in mobile phone sensing 

[40].  
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Figure 3 A reference EI architecture 

Layer-1: Sensing and local processing. The first layer is a physical layer. Various 

everyday objects and devices connect themselves to large networks. They sense and 

record changes in the environment, as well as transmit raw sensor data or locally 

processed data (e.g., high-level features or micro-contexts) to backend servers. 

Layer-2: Data collection infrastructure. The second layer gathers data from trusted 

sensor nodes and provides privacy-preserving mechanisms for data contributors. The 

following components are involved: 

 Sensor gateway. This component provides a standard approach (e.g., the web 

service techniques used in the SWE [51] and SenseWeb [23]) to data collection 

from various smart objects. The purpose of the gateway is to provide a uniform 

interface to all components (e.g., data processing and application components) 

above it. It also handles sampling optimism from smart devices. 

 Privacy manager. Privacy is a major concern for personal data sharing. This layer 

provides data anonymization and privacy protection mechanisms before data are 

released and processed. 

 Trust maintainer. A trust model is incorporated to ensure the trustworthiness and 

quality of data sources. 
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 Task manager. This component is significant to enable community sensing. It can 

analyze a sensing task from an application requester and assign it to the correct 

human contributor in terms of specified requirements, such as time window, 

location, and acceptance condition (see Section 5.1 for details). 

Layer-3: Data aggregation and intelligence extraction. This layer applies diverse 

machine learning and logic-based inference techniques to transform the collected low-

level, single-modality sensing data into the expected intelligence. The focus is to mine 

the frequent data patterns to derive the three dimensions of EI at an integrated level.  

Layer-4: Knowledge sharing. The extracted knowledge can be shared and retrieved by 

authorized application entities. This layer employs semantic web and ontology 

techniques to enable unified knowledge representation, sharing, and retrieval (i.e., query 

and subscription). 

Layer-5: Application layer. This layer includes a variety of potential applications and 

services enabled by EI-enhanced IoT systems. We will present some of the applications 

we have developed in the next subsection. 

6.2. Ongoing Projects and Performance Evaluation 

The aim of EI is to augment existing IoT with user awareness, ambient awareness, and 

social awareness. We’ve developed a number of applications in the ongoing projects, 

which demonstrate the EI concept and practice the key ideas incorporated in the 

reference architecture. These applications also demonstrate the key concept of W2T, 

leveraging the data from the hyper world to realize organic amalgamation and 

harmonious symbiosis among humans, computers and things. 

A. The Smart Campus 

The university campus is a typical socially-active environment. To assist and enhance 

social interaction among students and staffs, we have designed and implemented a 

Smart Campus prototype [57] based on the EI reference architecture, under a 

collaboration project with Microsoft Research Aisa. The smart campus aims to benefit 

the social interaction with the introduction of participatory sensing (see Section 5.1) and 

mobile social networking (see Section 4.3). We have implemented two typical 

applications: Where2Study and I-Sensing.  
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The main purpose of Where2Study is to find a suitable place to study by using Wi-Fi 

positioning technology. It not only presents the navigation map of a building to help 

students find classrooms (Fig. 4a), but also shows the status of all classrooms (full or 

free seats available), as shown in Fig. 4b. Furthermore, Where2Study is also a mobile 

social networking application, which supports students to query the status and locate 

their friends in the university campus. 

    
(a)                (b)                    (c)                  (d) 

Figure 4 Screenshots of Where2Study and ISensing 

Table 1 Technical summary of three EI applications 

Applications IoT Devices 
 

Scope Intelligence 
learned 

Intelligence extraction 
methods 

Smart campus Mobile phones,  
Wi-Fi receivers, 

University 
Campus 

Ambient contexts, 
Social connection 

Wi-Fi positioning 
Participatory sensing 

User awareness Mobile phones Human-centric Human activity, 
daily routines 

Decision tree  
(as the classifier) 

Pervasive  
gaming 

Ultrasonic sensors, 
Smart artefacts 

Smart homes Human activity Rule-based reasoning 

People are often interested in the information about a place while they are not there. 

For instance, Bob is in the library and wonders whether the tennis court is occupied. I-

Sensing is a campus-scale information sharing system based on participatory sensing, 

which allows users to share the status of public infrastructures in a university campus, 

such as play yards, libraries, coffee shops, and so on. Once a user posts a space-query to 

I-Sensing, the task manager (in Layer 2 of the reference architecture, RA for short) of I-

Sensing will deliver the sensing task to a selected number of “observers” who are 

locating near that space (based on their GPS readings). Local observers can answer the 

query by either authoring text messages or simply taking pictures (as shown in Fig. 4c). 
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To encourage users to participant in more social interactions, social competition is also 

incorporated (see Fig. 4d). In the future, we will analyze the interaction data from I-

Sensing and estimate inter-personal relations (e.g., based on their common point of 

interests, such as tennis court) and recommend friends to university users. 

A technical summary of the Smart Campus applications are given in Table 1. In 

short, by leveraging the mobile and static sensing devices in the campus, the EI-

enhanced IoT will provide university users with ambient and social awareness. 

B. User Awareness with Mobile Phone Sensing 

As described in Section 3.2, human activities (e.g., walking, sitting, in conversation), 

user daily routines are important contexts in terms of user awareness. With the 

prevalence of sensor-equipped mobile phones, awareness of user on mobile phones 

(using accelerometer data) has become a hot research area. However, it is still a 

challenge due to the constraints of resources on mobile phones, such as battery 

limitation, computational load, and so on. To address these issues, we have proposed a 

scalable user awareness algorithm based on the HDP strategy (refer to RA in Section 

6.1), whereby human contexts is derived from classifiers which execute in part on the 

mobile clients and in part on the backend servers. In detail, to reduce communication 

cost, raw sensor readings are processed by lightweight feature extractors (time features, 

frequency features) running on the phone, the extracted features are then transmitted to 

backend servers for user activity recognition and routing mining.  

  
Figure 5 Screenshots of the human activity recognition: training (left) and classification (right) 

To demonstrate the effectiveness of the HDP strategy, we developed the Activity 

Recognition application on the Samsung i909 Android platform. Figure 5 (left) 
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illustrates the data collection and training process of the application, while the 

classification process is shown in Fig. 5 (right). The battery lifetime is used as a metric 

to measure the resilience of the system. Firstly, when all applications and sensors are 

turned off, the battery lifetime is about 30 hours. This value declines to 11.2 hours 

(when the sampling frequency is 10 Hz) when simply the built-in accelerometer is 

working (without running the Activity Recognition application). We further measured 

the battery lifetime when 1) only feature extraction is executed on the phone and 2) both 

feature extraction and the classifier (based on the decision tree algorithm) are executed 

on the phone. As shown in Fig. 6, when the classifier is mounted from the phone to the 

backend server, the mobile phone battery lifetime increases from 6.3 hours to around 10 

hours (10 Hz), which indicates that the classifier consumes much higher power than 

feature extraction. This result also indicates that the HDP strategy can improve the 

energy-conservation performance of mobile phone sensing systems. 

 
Figure 6 The battery lifetime under different data processing strategies 

C. Pervasive Gaming 

The development of IoT has propelled innovations on entertainment. Pervasive gaming 

is one of its productions. By blending of real and virtual elements and enabling users to 

physically interact with their surroundings during the play, people can become fully 

involved in pervasive games and attain better gaming experience. We have developed 

Treasure, a pervasive game playing in the context of people’s daily living environments, 

which explores the interaction between human and smart indoor artefacts. 



26 

At the beginning of the game play, objects are hidden in different places of the 

house. Different objects play different roles (e.g., a monster, the treasure-box, the guide) 

in the game. When the players find a hidden-object (Fig. 7a) or perform certain 

activities (e.g., open a drawer), the relevant multimedia action is presented to transmit 

information to the players (Fig. 7b). Players need to hunt the ‘treasure’ to win the game. 

It should be noted that this game has the networked play mode, where a player A in a 

smart home can set a game in her house, and another player B can play the game online 

from a remote house, by using rotatable cameras installed in smart homes (Fig. 7c). For 

example, B can prompt A to touch an object which might be the “treasure-box”, as 

shown in Fig. 7a. 

 
Figure 7 Screenshots of iFun play 

Table 1 Reasoning time in different scales of smart spaces 

Smart spaces Size of ontology 
 

Number of 
smart objects 

Number of 
rules 

Maximum 
reasoning time 

Middle scale 2000 triples 50 50 1.2s 
Large scale 3000 triples 100 100 2.2s 

Logic-based reasoning (in Layer 3 of RF) is used to extract high-level user contexts 

(e.g., finding an object, opening a drawer) from human-object interaction. The extracted 

contexts is represented in an ontology-based model (kept in a backend server), to 

support context sharing among heterogeneous smart homes (in Layer 4 of RF). The 

ontology is represented using the Semantic Web language OWL, and the inference rules 

are represented using the Semantic Web Rule Language (SWRL, http://www.w3.org/ 

Submission/SWRL/). Jess (http://www.jessrules.com/), a forward-chaining inference 

engine is used to execute inference rules. Experiments have been conducted to evaluate 

the performance of ontology-based context reasoning in different scaled smart spaces. 

The test environment is a 1.0 GB RAM PC with P4/2.0GHz. We used two different-
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sized ontology and rule sets to evaluate the system scalability. The experiment results 

are illustrated in Table 1. It is not difficult to conclude that logic-based reasoning is 

affected by the ontology size and the number of rules applied. For most pervasive 

applications, as their real-time requirement is not likely to be critical, a perceivable 

delay (one or two seconds) is acceptable. The system performance in large-scale smart 

spaces, however, can be improved when applying high-performance processors. 

7. Conclusion and Implications for the Future 
The IoT continues to shift the computing and communication paradigm. The EI 

introduced in this paper is expected to augment existing IoT systems with user, ambient, 

and social awareness, and enable a wide range of innovative applications in IoT. For the 

EI to be fully employed, numerous challenges remain to be addressed. All these 

challenges present substantial research opportunities for academic researchers, 

industrial technologists, and business strategists. We have also presented a reference 

architecture and some of our ongoing practices on EI-enhanced IoT. However, the 

development of EI presents both advantages and liabilities: although it connects people 

and makes lives more convenient, it impinges on privacy as never before. The future of 

EI is, in some ways, profoundly sobering, even as it promises infinite possibilities for 

business. 
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