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Abstract—Spatial crowdsourcing (SC) is an emerging 

paradigm of crowdsourcing, which commits workers to move to 

some particular locations to perform spatio-temporal-relevant 

tasks (e.g., sensing, activity organization). Task allocation or 

worker selection is a significant problem that may impact the 

quality of completion of SC tasks. Based on a conceptual model 

and generic framework of SC task allocation, this paper firstly 

gives a review of the current state of research in this field, 

including single task allocation, multiple task allocation, low-cost 

task allocation, and quality-enhanced task allocation. We further 

investigate the future trends and open issues of SC task allocation, 

including skill-based task allocation, group recommendation and 

collaboration, task composition and decomposition, and 

privacy-preserving task allocation. Finally, we discuss the 

practical issues on real-world deployment as well as the challenges 

for large-scale user study in SC task allocation. 

 
Index Terms—spatial crowdsourcing, task allocation, data 

quality, optimization, grouping and collaborating. 

I. INTRODUCTION 

Crowdsourcing is firstly presented by Jeff Howe in 2006, 

which is the combination of two words, crowd and outsourcing 

[1]. It defined as the “act of taking a job traditionally performed 

by a designated agent (usually an employee) and outsourcing it 

to an undefined, generally large group of people in the form of 

an open call” [2]. In recent years, crowdsourcing is becoming a 

popular way to take advantage of the collaboration of a large 

number of individuals to obtain available information. Unlike 

traditional methods which rely on dedicated staff, any human 

worker can play the role of data sourcing in crowdsourcing, and 

people who want to obtain the information need to actively ask 

for some workers to answer their questions. Crowdsourcing has 

a wide range of application areas. Classically, most of the 

traditional tasks in crowdsourcing are seen as participative 

activities based on online platforms, such as Amazon 

Mechanical Turk
1
. The participative online activities may be 
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proposed by an individual or an organization, such as in natural 

language understanding [3], image labeling [4], speech 

transcription [5], software development [6], and information 

mining [7]. A group of individuals with varying knowledge and 

skills can undertake those tasks via a flexible open call with 

some incentives. However, sometimes online crowdsourcing 

may not work when the tasks contain special requirements 

associated to physical places. 

In the real world, geographic information plays an important 

role in many aspects of human life, e.g., real-time traffic 

information, air quality at different places, etc. Therefore, the 

collection of geospatial data has become a focused area. In 

addition, with the rapid development of pervasive computing 

technology, mobile devices with more powerful computing and 

sensing capabilities have become increasingly popular. People 

with mobile devices (e.g., mobile phones, tablets, wearable 

devices) embedded with sensors have the ability to collect 

various types of data (e.g., pictures, videos) close to their 

location, such as collecting the information of air quality. These 

factors promote the emergence and growth of new way of 

crowdsourcing, named spatial crowdsourcing (SC) [8]. 

In general, SC is a new paradigm of crowdsourcing 

platforms that outsources different types of spatio-temporal 

tasks to the workers or participants in the real world. Due to the 

rapid development of mobile networks and the widespread 

usage of mobile devices, SC has become a promising research 

area. In SC, the task requesters could publish some spatial tasks 

in the real-world and ask for data related to a specific spot, and 

workers with mobile devices are invited to perform tasks by 

moving to target locations specified by the tasks. Different 

from traditional crowdsourcing, SC applies the principles of 

crowdsourcing to perform tasks with human involvement and 

powerful mobile devices. On the one hand, workers with 

different capabilities (e.g., human perception, knowledge, 

common sense) could perform various tasks. On the other hand, 

human mobility of workers offers unprecedented opportunities 

for both data collection and transmission with mobile devices. 

These advantages have enabled a variety of novel SC 

applications in different domains, such as urban dynamics 

mining [9], public safety [10], traffic planning [11], etc. 

Recently, many SC platforms have been developed to support 

publishing and completing of spatial tasks, like gMission [12], 

mCrowd [13]. 

Note that most SC tasks described in the literature are 

sensing tasks, and this new way to complete sensing tasks is 

known as Mobile Crowd Sensing (MCS) [14,15]. Specifically, 

the participants in MCS use their smart devices to perform 

large-scale sensing tasks, such as collecting traffic information. 
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In recent years, some new spatial tasks different from sensing 

tasks have appeared, such as organizing activities by the 

community, service sharing with multiple people [16], etc. For 

example, Ridesharing [17] is a typical application in service 

sharing that allows people to share free seats in taxis with a low 

transport cost. Based on the concept of ridesharing, other new 

shared service applications have been developed, for example, 

taxis could deliver packages while taking passengers [18]. 

Typically, there are three components in SC: tasks, workers 

and the server. The task requester first submits tasks with some 

information (e.g., location, time) to the server, and a number of 

available workers are selected to complete the tasks and send 

data to the server. Finally, the requester obtains the results 

processed and integrated by the server. Note that the selected 

workers play the main role in spatial crowdsourcing, and will 

impact the efficiency and quality of the tasks performed. While 

SC takes advantage of huge number of participants to enable 

massive mobile data sensing, it also brings many new 

challenges. One of the key challenges is the participant 

recruitment problem [19], namely, how to effectively select 

appropriate participants from the citizen community to perform 

various tasks while satisfying certain constraints. 

In general, there are two ways for tasks to be assigned in 

crowdsourcing: worker-selection (WS) and server assignment 

(SA) [8]. In WS, workers can choose which task(s) to complete 

by browsing the published tasks on the server. For example, 

there is a task about exploring a specific piece of the urban 

environment in the platform of Campaignr [20], and any person 

who registers on the platform can perform the task and upload 

the data collected via a smart phone. Different with WST, SAT 

collects some information of all workers (e.g., location, 

preference) and requirements of tasks (spatio-temporal contexts, 

domains), and directly assigns workers with appropriate tasks. 

Note that the server allocates spatial tasks to the optimal set of 

workers in view of different strategies, such as maximizing the 

quality of completing tasks, minimizing the system cost. 

Therefore, SAT is more popular in spatial crowdsourcing, as it 

could make the best use of worker resources and improve the 

quality of the tasks performed. However, there are some 

challenges in SAT task allocation. For example, a large number 

of location-based tasks makes the solution space of the problem 

very large, and various constraints of tasks and workers 

increase the complexity of the problem. 

This paper gives an overview of task allocation and presents 

its future trends. In particular, we have the following 

contributions: 

 

 Presenting the basic concepts of tasks, workers and the 

server in SC, then proposing a generic framework for task 

allocation. 

 Reviewing the current state of research in SC task 

allocation, and presenting the key challenges and 

techniques of task allocation, including single task 

allocation, multiple task allocation, low-cost task 

allocation, and quality-enhanced task allocation. 

 Investigating the future trends and open issues of SC task 

allocation. We first present some new forms of SC tasks, 

like object delivery, object tracking and complex tasks. 

Then some future research directions on task allocation 

are explored, such as skill-based task allocation, group 

recommendation and collaboration. 

 Discussing the practical issues and challenges in SC. We 

identify some issues on real-world deployment, such as 

human participation, load balancing, etc. Based on the 

existing SC platforms, we illustrate the challenges for 

large-scale user study in SC task allocation. 

 The remainder of this paper is organized as follows. In 

Section II, we present some basic concepts in SC, and propose a 

generic framework for task allocation. Section III presents the 

key challenges and techniques of task allocation. In Section IV, 

we investigate the future trends and open issues of SC task 

allocation. The practical issues on real-world deployment and 

the challenges of large-scale user study in SC task allocation 

are discussed in Section V. Finally, we conclude the article in 

Section VI. 

II. CHARACTERIZING SC TASK ALLOCATION 

Before introducing the research challenges of SC task 

allocation, we first present the conceptual model.  

A. The Conceptual Model 

SC refers to the process that various spatial tasks are 

completed by moving workers. Generally, there are three 

objects in the process of SC: tasks, workers and the server. For 

the task, anyone can submit requests (with spatio-temporal 

contexts) for real-world objects as tasks. For the worker, any 

individual who has the ability to complete tasks can be seen as a 

worker, and may receive monetary reward for completing tasks. 

For the server, it is necessary to allocate each of the submitted 

tasks to an optimal set of workers to achieve the task 

successfully. Then, we will give the detail concepts of tasks, 

workers and the server. The conceptual model of SC is shown 

in Fig. 1. 

1) Tasks  

In the real world, SC tasks refer to a series of physical 

processes which could be performed collaboratively by a 

number of independent individuals. Usually, there are several 

important aspects that are used to model the task in SC, which 

are described in detail in the following. 

a) Type 

We define various types of SC tasks in view of the temporal 

and spatial information in SC. 

First, there are two task types according to the temporal 

information: urgent task [21] and normal task [22]. For the 

urgent task, workers are asked to complete tasks as soon as 

possible to obtain timely and useful information, such as 

collecting traffic dynamics information, monitoring drainage 

status, etc. Unlike the timeliness requirements for workers in 

urgent tasks, normal tasks do not need to be finished 

immediately. For example, workers could collect information 

of public facility over a period of time (say one week). 

Second, spatial tasks may be divided into three types based 

on the spatial information: point task [23], region task [24] and 

complex task [25]. Point task, such as observing the flow of 

people at a street intersection, is location-specific. A worker 

thus has to visit the specific location to complete the task. 

Region task is accomplished in an area instead of the precise 

location, like measuring the air quality in a district/region 
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within a city. Note that each worker is required to perform the 

same action to complete point task and region task. However, 

complex task contains multiple different sub-tasks, which 

means that a task could be divided into multiple sub-tasks 

according to different demands for workers to accomplish. For 

example, given the task to obtain pictures of a large building, 

two sub-tasks may be performed in order to get a good quality 

image, one is getting a perspective of the whole building, while 

the other is getting the closer view for the building. 

Third, spatial tasks can be classified into two task types 

considering both temporal and spatial information: static task 

[26] and dynamic task [27]. Static task consists of the spatial 

information with the fixed positions, like air quality monitoring, 

noise information mapping and so on. On the contrary, the 

spatial information of a dynamic task includes a sequence of 

uncertain locations corresponding to the temporal information, 

such as mobile ridesharing service, package delivery, 

suspicious vehicle tracking, etc. 

b) Spatio-temporal Contexts 

It is necessary to define the SC task with spatio-temporal 

contexts in the real world. Generally speaking, the requester 

who posts a task at the SC platform must provide the spatial and 

temporal information, such as road’s name in traffic monitoring 

and restaurant’s location in food delivery. 

For the spatial information, point position and area position 

are frequently used to describe the task, such as in recording the 

number of passengers at the bus station, and measuring the air 

quality in a large park. For the temporal information, two 

important times that workers need to pay attention to are the 

start and end times. For instance, workers may be required to 

collect information of a concert during the performance (say 

18:00-20:00). 

c) Methods of Completing Tasks 

In general, there are various methods for workers to 

complete tasks due to different requirements of SC tasks. For 

example, tasks may be performed by a number of independent 

individuals [28], the collaborative community [29], and via 

sharing some service [30]. There may be some new methods of 

completing tasks with the appearance of new SC tasks and 

pervasive technology in the future. For an individual, he/she 

could utilize his/her mobile device to conduct sensing tasks 

independently, such as obtaining traffic information by taking 

photos. A community formed by some workers with different 

abilities may be required to perform the tasks collaboratively, 

like developing software. It is worth noting that workers in the 

community could influence each other to some extent. In 

addition, multiple tasks could be accomplished by leveraging 

the same resource, e.g., multiple passengers sharing a taxi in a 

ridesharing service.  

d) Domains 

As in any job/task, the SC task may involve different 

knowledge domains. Therefore, a set of domains D = {d1, d2 . . . 

dm} denotes the knowledge topics required. For example, 

organizing a public activity (task t) by various volunteers may 

require many domains such as activity planning (d1), 

advertising (d2), personal arrangement (d3), etc. 

e) Price 

Since workers obtain revenues from completing tasks, the 

price of tasks plays an important role in SC, as it affects the 

enthusiasm of workers to participate. Generally speaking, the 

requester who provides the task has a right to price for the task, 

which takes into account the scale of the task, the difficulty of 

performing the task for workers, and so on. 

2) Workers  

To describe SC workers, we associate each worker wi with a 

set of attributes in the SC platform. 

a) Spatio-temporal Contexts 

Spatio-temporal contexts of the workers refer to the 

information of time and space, which are used to select 

appropriate participants to complete tasks effectively in SC. 

First, it is necessary for the platform to confirm the available 

time of the worker, such as, office workers can only accomplish 
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Fig. 1.  The conceptual model of SC. 
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SC tasks after working hours. For the worker’s spatial 

information, some localization techniques [31,32], including 

indoor localization and outdoor localization techniques, are 

used to identify the current location. Spatial information of 

workers not only contains the current position, but also the 

moving traces of workers [33]. By studying workers’ historical 

movement patterns, more information will be mined and 

obtained to make efficient task allocations, such as the path of 

future movements, point of interests, and so on. 

b) Skills 

A worker may have diverse skills. A skill of the worker 

corresponds to the knowledge on a particular skill domain in D, 

and it can be quantified in a continuous scale (e.g. in a scale [0, 

1]) to indicate the level of the worker’s expertise for a topic. For 

example, a value of 0 for a skill reflects that the worker has no 

expertise in the corresponding domain. Note that only the 

worker whose skill level is not less than the minimum 

knowledge requirement for the task has the opportunity to 

complete the task. 

c) Preference 

In SC, the preference of workers to complete tasks generally 

appears in three aspects: preference for task type, location and 

time. For task type, some workers are willing to perform 

normal tasks without the additional burdens of movement, but 

some workers tend to complete urgent tasks to obtain more 

incentive. For the preference on location and time, different 

people have various favorite places at the corresponding times. 

For example, young people may prefer to obtain information at 

the mall in the evening, while the elderly may be happy to 

perform tasks in the park in the morning. 

d) Trust 

The trust of worker reflects the probability that the worker 

correctly complete a task. In general, worker’s trust can be 

computed based on the historical data of finishing different task 

types. For example, worker wi has performed the task of 

labelling 10 images, where 8 images are correctly labelled. So 

we can conclude that worker wi has a probability of 80 percent 

to correctly perform a task with labelling images, and the value 

of trust is 0.8. 

3) SC Server 

The major functions of the SC server are storing data and 

allocating crowdsourcing tasks. 

For storing data, on the one hand, the server stores the 

information of tasks provided by requesters and the data of 

tasks collected by workers. On the other hand, the server 

gathers and processes the data of workers, such as obtaining the 

worker’s current location and predicting his/her next location. 

Then, based on the datasets in the server, the server assigns 

tasks to suitable workers. 

For allocating tasks, the strategy of task allocation may 

impact the quality of the tasks, since workers have diverse 

qualities on different tasks. Many task allocation research 

efforts select the appropriate workers to perform tasks by 

solving the optimization problem in view of different 

optimization goals and constraints [34]. Here, we introduce two 

important optimization problems used in task allocation. The 

first optimization problem is maximizing the quality of 

completing tasks [35] while satisfying some constraints of tasks 

(e.g. time and position constraints). The second optimization 

problem minimizes the system cost [36]. 

In general, there are different ways to measure the quality of 

completing tasks. For example, the quality of completing tasks 

may refer to the sensing data quality in MCS, such as the 

quality of pictures taken by workers. To simplify the process of 

computing the quality of data, some parameters are frequently 

used to represent the quality of sensing, like the number of 

participants, the coverage of the sensing task, etc. It is usually 

assumed that the more the number of participants to perform 

tasks, the higher the quality of the sensing. For the community, 

the collaboration of workers is the major factor, which dictates 

the quality of completing tasks by the community. For instance, 

we can compute the value of the workers’ collaboration in a 

community to accomplish tasks in view of the skills of workers. 

Given the task T with a set of domains D = {d1, d2, d3, d4}, and 

community A (n workers) with a set of skill domains in DA = 

{d1, d2, d3} of task, community B (n workers) with a set of skill 

domains in DB = {d1, d2, d3, d4}. Obviously, community B could 

finish the task T with higher quality. In addition, the quality of 

completing tasks can be defined as the number of accomplished 

tasks leveraging the existing resource in service sharing. For 

example, the number of passengers (tasks) in ridesharing 

should be maximized to improve resource utilization. 

System cost usually represents the costs consumed by 

devices and the incentives of recruiting participants. For the 

cost of devices, it mainly includes the consumed energy of 

collecting, transmitting, processing and storing data.  For the 

cost of workers, the requester provides some incentives to 

stimulate participants to complete tasks. The total incentives of 

performing the task depends on various factors, such as the 

number of selected participants, the traveling distance to 

accomplish the task, and so on. 

B. A Generic Framework 

We show the generic framework in Fig. 2. 

1) Task Publishing 

There are two indispensable parts in the SC platform: 

workers and tasks.  

In the task pool are all tasks provided by task requesters. 

Note that not all tasks in the task pool are supposed to be 

published in the platform directly for task allocation. Therefore, 

the platform publishes some available tasks during the same 

time span according to the type of tasks. The platform first 

selects some tasks from the task pool, and then combines or 

decomposes the tasks. For the task combination, considering 

that most tasks are likely to arrive one after the other, the 

platform could combine some normal/non-urgent tasks, which 

are published in the platform within a period of time (e.g., one 

hour). Therefore, multiple different tasks are published in the 

platform during the same time span. For the task decomposition, 

since a complex task usually contains multiple different 

sub-tasks, the platform could publish some sub-tasks with 

different requirements to accomplish each sub-task. 
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Some available workers in the platform are selected to 

perform published tasks. Owing to different demands of tasks, 

the platform needs to pick candidates who have the ability to 

perform tasks. For example, only workers with mobile devices 

have a chance to collect data. 

2) Task Allocating 

It is necessary to allocate SC tasks to some appropriate 

workers in order to improve the efficiency of completing tasks. 

Consider a crowd of available workers W={w1,w2,w3…}, and a 

variety of tasks published by task requesters, denoted by 

T={t1,t2,t3…}. Assuming that the optimization objective 

function is f(x), which is usually defined as maximizing the 

quality of completing tasks, minimizing the system cost, etc. In 

addition, the selected participants are required to accomplish 

tasks while satisfy the constraints of tasks. For example, 

workers have to perform tasks at the position of tasks within the 

given time. Finally, the server selects the optimal set of workers 

S (S⊆W) corresponding to tasks via the optimization model. 

3) Task Performing 

Only selected workers are asked to perform SC tasks. Some 

common methods of completing tasks are widely used in SC, 

for example, tasks are performed by a number of independent 

individuals, the collaborative community, sharing some 

service. 

III. KEY CHALLENGES AND TECHNIQUES 

Having presented the major concepts and the generic 

framework of SC task allocation, in this section we focus on the 

key challenges and techniques studied in the literature. 

A. Single Task Allocation 

From the time when the initial idea of SC was proposed, 

most task allocation studies have focused on a single task, i.e., 

the SC task is associated with only one kind of sensing data and 

one specific objective, e.g., noise or traffic sensing. Generally, 

such works can be seen as selecting an optimal subset of users 

from all the candidates to complete a task while fulfilling 

multiple needs. Commonly considered needs include 

optimizing energy consumption, reducing incentive budget cost, 

improving sensing quality, etc., which can either be the 

objectives or the constraints in the task allocation optimization. 

According to users’ mobility patterns and task allocation timing, 

we can classify literature covering single-task allocation into 

the following categories.  

1)  Intentional or Unintentional Movement 

SC covers two types of participants. The first type performs 

sensing tasks opportunistically, i.e., users will not change their 

routine mobility patterns and simply sense certain data 

unintentionally while traveling (unintentional movement). The 

second type of participants will intentionally travel to a certain 

location on purpose to finish the task (intentional movement). 

Traditionally, these two lines of works have been separately 

studied. 

For unintentional movement, researchers usually need to 

carefully study the participants’ historical movement patterns 

to ensure that task allocations are efficient. Ideally a task can be 

assigned on a participant’s (near) future trajectories, and the 

participant can opportunistically complete the task when she 

moves normally. However, such task allocation is non-trivial in 

practice as a participant’s mobility pattern is uncertain to some 

extent. Reddy et al. [37] study a recruitment framework that 

selects workers to maximize spatial coverage in data collection. 

Cardone et al. [38] also take user smartphones’ battery levels 

into account when selecting appropriate workers to maximize 

the task completion ratio (e.g., spatio-temporal coverage). 

Zhang et al. [39] propose a worker selection framework to 

minimize incentive payments while satisfy the probabilistic 

coverage constraint under the piggyback MCS paradigm. 

While the above works are mostly server-centralized solutions, 

an autonomous and distributed task allocation strategy is 

proposed in [40]. Briefly, these works are based on the 

assumption that users’ moving traces will still follow their daily 

routines even when they have been assigned tasks.  

For intentional movement, researchers assume that 

participants can actively visit the task locations to complete the 

assigned tasks in exchange for rewards. In this case, 

participants’ traveling distance or time becomes a critical factor 

to consider, since a participant usually may not be willing to 

travel a long distance in order to complete certain tasks. He et al. 

[41] propose an optimal task allocation scheme for location 

dependent MCS tasks, aiming to maximize the rewards for the 

MCS platform while keeping each participant’s travel time to 
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the assigned locations as a constraint. Cheung et al. [42] 

propose a distributed method for users to select their tasks, 

considering task time, moving costs, user reputation, etc. The 

proposed distributed solution achieves a comparable 

performance with centralized solutions. 

2) Offline or Online Allocation 

Regarding the time of the task allocation schemes, we can 

category them into two types: offline allocation and online 

allocation. In offline methods, the task allocation strategy is 

determined before the task starts. In such methods, usually the 

spatio-temporal information of tasks is known, while the 

participants’ future locations are to be predicted. Under such 

schemes, location prediction becomes a key issue as it may 

affect the final task allocation performance, and commonly 

used algorithms are Poisson-based [39]; the task allocation 

performance generally increases as the participants’ historical 

mobility traces accumulate. 

Recently, online allocation methods have increasingly been 

examined, where the mechanism needs to be able to adapt 

according to the real-time micro-task and candidate participants’ 

locations. Tong et al. [43] design an online task allocation 

mechanism to deal with the MCS scenario where tasks and 

participants appear dynamically. Their proposed solution 

provides a theoretical performance guarantee under the online 

random model. Han et al. [44] design trustful scheduling 

mechanisms for selecting appropriate participants under both 

the offline and the online settings. Pu et al. [45] propose an 

online MCS task allocation policy called CrowdLet, where 

service requesters can self-organize their task crowdsensing 

processes proactively by recruiting appropriate workers 

opportunistically encountered by the requesters. 

B. Multiple Task Allocation 

In recent years, researchers have begun to study the SC task 

allocation problems in a multi-task setting. While there is much 

less work compared to single-task ones, some interesting and 

important results have also been established. 

Generally speaking, multiple task allocation addresses to two 

types of multiple tasks, homogeneous and heterogeneous tasks. 

As locations are usually different for different tasks, this 

homogeneous-heterogeneous classification depends highly on 

whether tasks have other specifications/requirements as well. 

Homogeneous multiple tasks may only have different task 

locations, while heterogeneous multiple tasks can have diverse 

specifications like temporal (different tasks need different 

sensing timing spans) and/or sensor (different tasks need 

different sensors) requirements. It is worth noting that 

homogeneous multiple tasks are somehow related to the single 

task scenario which includes multiple sub-tasks, and thus their 

task allocation strategies may inspire and facilitate each other 

under certain conditions. Despite this similarity, we separately 

discuss the two categories of task allocation works according to 

their original authors’ claims for conceptual clarity. 

1) Homogeneous Tasks 

Xiao et al. [46] study the SC task allocation problem in a 

mobile social network (MSN), where a mobile user, called 

requester, may have multiple tasks that need other users in the 

MSN to help; however, the requester can only assign tasks and 

collect data when another user is within her proximity (e.g., 

through WiFi or Bluetooth). The authors design both offline 

and online task schemes for the requester to minimize the time 

for completing all tasks by considering other users’ mobility 

patterns. Song et al. [47] consider different QoI (Quality of 

Information) requests of SC tasks, i.e., granularity and quantity, 

and propose a multi-task allocation strategy to select a 

minimum subset of workers to meet the QoI requirements of 

concurrent tasks under the total budget constraints. 

ActiveCrowd [48] studies the problem of multi-task worker 

selection under both intentional and unintentional movement 

situations, which are suitable for time-sensitive and 

delay-tolerant tasks, respectively. Liu et al. [21] try to address 

the multi-task allocation problem from another perspective. It 

classifies tasks into two situations: (1) MPFT (more 

participants, few tasks) and (2) FPMT (few participants, more 

tasks). In traditional MCS studies, primarily MPFT is studied, 

i.e., assuming the candidate participants are redundant. 

However, FPMT may also happen, e.g., in a heavy rain, few 

people are on the road, but many urgent tasks such as collecting 

traffic dynamics information may be published in the MCS 

platform. 

2) Heterogeneous Tasks 

Compared to homogeneous multiple tasks, heterogeneous 

multiple task allocation often needs to consider additional 

factors regarding each task’s requirements. Li et al. [28] 

considers a dynamic participant recruitment problem (i.e., 

participants come dynamically) with heterogeneous sensing 

tasks (different temporal and special requirements), which aims 

to minimize the sensing cost while meet the coverage 

constraints. Three greedy algorithms are proposed to tackle this 

dynamic participant recruitment problem. Xiao et al. [49] study 

the deadline-sensitive worker selection problem, where each 

task has a deadline to satisfy. The authors propose to use a 

probabilistic task allocation method (i.e., a participant assigned 

with a task will finish it with certain probability), where 

multiple workers can cooperatively perform a task to meet the 

task deadline. In addition to temporal requirements, 

heterogeneous tasks may also need different types of sensors. 

Wang et al. [50] consider the sensor availability of participants 

by converting the multiple task allocation problem into a 

bipartite graph and propose an iterative greedy algorithm to 

address it. 

C. Low-Cost Task Allocation 

Reducing the costs, such as energy consumption, mobile data 

costs, and incentive budget, is always a key objective of SC task 

allocation. While the previously mentioned research studies 

often use these as the optimization objectives, here we 

explicitly summarize some recent breakthroughs in the 

low-cost SC task allocation literature for clarity. 

1) Piggyback Crowdsensing 

On a worker’s smartphone, piggybacking SC task with other 

running mobile application can reduce the energy consumption 

required by the MCS task itself [36]. Thus, assigning 

participants tasks and letting them upload data when other 

mobile applications are running (e.g., making a phone call) can 

save the overall energy consumption of all participants 

significantly [51]. Based on this strategy, Xiong et al. [22] 

propose a framework of near-optimal task allocation to 

trade-off the participants’ overall energy consumption, 

incentive costs, and the tasks’ sensing coverage quality. 
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2) Compressive Crowdsensing 

Recently, compressive sensing [52] has been applied in SC 

to infer un-sensed data based on the collected data, so as to 

significantly reduce the data needed in collection. [53] proposes 

a compressive sensing based method for various types of SC 

tasks, e.g., rat inspection and housing survey. In addition to 

missing data inference with compressive sensing, [54] 

identifies two other important problems to be addressed in 

compressive crowdsensing, i.e., cell selection (where to sense) 

and quality assessment (how to quantify the inference data 

quality in real time). It proposes to use Bayesian inference and 

active learning techniques to address these two issues, and also 

calls this paradigm as sparse MCS [55]. 

3) Opportunistic Encounter-based Allocation 

In most SC applications, participants use 3G/4G networks to 

upload sensed data. However, sometimes the data size is large 

and thus the communication data cost is huge. To reduce such 

costs, short-distance wireless transmission techniques (e.g., 

Bluetooth, WiFi direct) are introduced into MCS task allocation. 

[56] studies two task allocation problems for minimizing the 

average makespan or largest makespan of all the tasks, 

respectively, considering the time that a requester needs to send 

tasks to the opportunistically encountered nearby participants 

and to receive the sensed data, as well as all the users’ mobility 

patterns. EcoSense [57] tries to assign mobile participants with 

different roles in the sensed data uploading stage, so that some 

participants can help other participants offload their data to the 

server when encountered, with the objective of minimizing the 

overall data uploading energy consumption and communication 

costs. 

D. Quality-Enhanced Task Allocation 

Quality of sensing is a crucial issue for consideration in SC 

tasks. The involvement of quality needs in task allocation thus 

becomes an interesting and critical research direction. Quality 

can be characterized from various aspects, including the 

coverage of sensing regions, the duration of sensing time, data 

granularity, quantity, etc. 

Since the uncertainty and uncontrollability of workers in SC, 

the evaluation of sensing quality should be performed online. 

For example, the SC platform can evaluate the quality of the 

photo as soon as worker uploads it when performing visual 

sensing tasks, and then selects other workers based on real-time 

results. Therefore, online algorithms are crucial in selecting 

proper workers who have the capacity to obtain high quality 

data. In view of data quality and budget in spatial crowdsensing, 

[54] explores the quality-guaranteed online task allocation in 

compressive crowdsensing. It proposes a so-called (ε, 

p%)-quality metric to quantify the quality of data in 

compressive crowdsensing, which means that the inference 

error of more than p% of the sensing cycles is lower than ε. A 

Bayesian statistical analysis method is applied to estimate 

whether new tasks need to be allocated further to achieve the 

required data-quality level. In addition, the quality of 

crowdsensing data cannot be fully guaranteed since workers are 

unprofessional. To improve sensing robustness in mobile 

crowdsensing, [58,59] proposes a novel framework, namely 

Budget LImited robuSt crowdSensing (BLISS), to tackle the 

problem of uncertainties about data quality, and an online 

learning approach is adopted to choose participants by 

minimizing the difference on average sense between the 

achieved total sensing revenue and the optimal one under a 

limited budget. Specifically, the online approach can acquire 

the statistical information about the sensing values throughout 

the selection process. 

Some valuable quality metrics are proposed in previous 

research to evaluate the sensing quality in spatial 

crowdsourcing. [47] introduces a quality-aware metric by 

consideration of data granularity and quantity. A movement 

prediction model is proposed to estimate the quantity of data 

that can be collected by a worker within the sensing area. [22] 

defines a spatio-temporal coverage metric, called k-coverage, 

to additionally consider the fraction of covered subareas. An 

optimization algorithm is proposed to lower the incentive cost 

and meet the k-coverage constraints. Also quantified by spatial 

and temporal coverage metrics, [60] proposes a greedy 

approximation algorithm for worker selection in vehicular 

crowdsensing networks. By jointly taking into account worker 

ability, timeliness, and task reward, CrowdLet [45] uses the 

service quality metric for measuring the quality of SC task 

performing. A dynamic programming algorithm is proposed to 

maximize the expected service quality.  

Data validity also impacts the quality of SC tasks. 

Considering that workers are not trusted equally, the challenge 

is how to measure the validity of the data contributed by them. 

To address this, [61] utilizes the reputation score to state the 

probability that the worker performs a task correctly. A 

confidence level for each spatial task is also introduced to judge 

whether the confidence of the results to a spatial task can be 

accepted or not. The quality of data is also impacted by 

incentives [62]. Without proper incentives, the quality of data 

contributed by crowd workers may be lowered. Therefore, in 

the future, it is also important to study the combined effects of 

quality measurement and incentive mechanisms in SC task 

allocation. 

IV. FUTURE TRENDS AND OPEN ISSUES 

There are still some limitations in recent research on SC task 

allocation, so we investigate the future trends and open issues in 

this section. 

A. Toward New Forms of SC Tasks 

Spatial crowdsourcing commits workers to perform spatial 

tasks in real-world settings. Traditional SC tasks mostly ask 

users to gather and share data using the integrated sensor 

capabilities of their mobile devices. However, not all spatial 

tasks are simple ones, such as taking a photo (e.g., FlierMeet 

[63], InstantSense [64]), reporting traffic jams (e.g., Google 

Waze [65]) or recording noise conditions (e.g., NoiseTube 

[66]). Research on spatial crowdsourcing has been evolving on 

multiple fronts and is now nurturing many new forms of spatial 

tasks, such as object delivery, object tracking, and other 

complex tasks.  

1) Object Delivery 

Spatial crowdsourcing is a part of the larger disruptive trend 

often referred to as the sharing economy. One of the 

representative SC services under this umbrella is crowdsourced 

object delivery, where people go about their daily lives but have 

the opportunity to carry individuals/objects to be delivered to 
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specific locations. [67, 68] investigate and recommend ride 

sharing opportunities by analyzing human mobility patterns. 

CrowdDeliver [69] presents a novel passenger and package 

mixed transport mode which leverages the unintentional 

cooperation among a crowd of occupied taxis to deliver 

city-wide packages. They formulate it as the arriving-on-time 

problem to deal with the uncertainties of passengers and 

package requests. [18] also combines people and packages 

using taxis. It uses a neighborhood search method to optimize 

the taxi routes regarding the on-demand delivery requests 

defined by pickup and drop-off points. 

UberEats
2
 aim to improve the food delivery service using 

spatial crowdsourcing. Users could request food delivery from 

any restaurant on the service platform. The platform will then 

assign delivery tasks to nearby workers for picking up food 

packages from relevant restaurants. Compared with 

ride-sharing of packages, food ride-sharing problems are more 

challenging for several reasons. First, food delivery has more 

strict ‘pick-up’ (from the restaurant) and ‘arrival’ (to the food 

order) time constraint to ensure the quality of food and meet 

user dining demands/preferences. Second, the food package is 

usually smaller in size (by comparison with other types of 

packages) and to increase delivery efficiency and lower cost, a 

delivery-worker is often assigned multiple tasks (CrowdDeliver 

[69] is an SC-based package delivery system but only one 

package is delivered at a time by a worker). This will result in 

much more complicated optimization problems on SC task 

allocation. 

2) Object Tracking 

Existing SC studies mostly focus on static object sensing. 

We, however, can extend it to moving object sensing. 

Crowdsourced object tracking is an interesting research topic 

towards this direction. FindingNemo [70] targets the 

application of tracking and locating the lost child using 

low-power BLE peripheral via mobile crowdsensing and 

transparent peer collaboration. Similarly, SecureFind [71] 

presents a SC-based object finding system, where unique 

Bluetooth tags are attached to each valuable object. Though 

there have been initial studies in crowd tracking, special 

devices/tags are required. In the future, we may build crowd 

tracking systems by using only smartphone cameras, to form 

crowdsourced dynamic camera networks (as opposed to 

stationary-deployed camera networks [72]) for object tracking. 

3) Towards Complex Tasks 

SC tasks can be complex rather than simple in many cases, 

such as preparing for a social activity and collaborative disaster 

relief, which may consist of several steps and require the 

participation of workers with diverse skills [73]. We discuss 

about it in detail in the next subsection. 

B. Skill-based Task Allocation 

Most existing worker models assume that workers have the 

same expertise on different tasks. In practice, however, tasks 

belong to diverse domains, and workers have different 

expertise on different domains. It is important to select workers 

carefully based on the dedicated task requirements and human 

skills. According to WikiPedia
3
, skill is defined as “the ability 

 
2 https://www.ubereats.com/ 
3 http://www.wikipedia.org/ 

to carry out a task with pre-determined results”, and “often 

divided into domain general and domain-specific skills”. 

Regarding the diversity of spatial crowdsourcing tasks, human 

skills can be broadly linked to different abilities or attributes 

that a worker has, such as familiar knowledge domains, user 

preferences/interests, experiences, daily activity patterns, 

often-visited places, just name a few. 

1) Skill-based Task Allocation 

There have been numerous studies in skill-based 

crowdsourcing. For example, [74] examines user skills using 

knowledge base, e.g., Wikipedia and Freebase
4
, to detect the 

domain of tasks and workers. Spatial crowdsourcing should 

consider more skills in real-world settings. SmartCrowd [75] 

assigns tasks to workers by accounting for worker expertise, 

wage requirements, and their availability. [73] studies 

skill-oriented SC task allocation by satisfying the task 

requirements on different skills and maximizing workers’ 

benefits. [22] estimates accuracies of a worker by evaluating 

her performance on the completed tasks, and predicting which 

tasks the worker is well acquainted with. [76] models 

tasks/workers using a hierarchical skill tree, which can map 

workers to tasks in a way that exploits the natural hierarchy 

among the skills. [77] selects workers of different daily activity 

patterns such that the spatio-temporal diversities of SC tasks are 

maximized. 

2) Data-driven Skill Learning 

Regarding the importance of skills in SC task allocation, 

another challenge is how to learn the skills of users. Explicit 

human inputs of skills can be one way to achieve this, but it is 

often time-consuming and the information obtained is often not 

complete. Alternatively, we can link human skills with artificial 

intelligence techniques and learn them from historical data. [78] 

finds that user skills to SC tasks are related to the attributes such 

as spatial proximity, the payment made, or the task theme. The 

logistic-regression technique is used to learn users’ individual 

preferences from past data. [79] identifies existing social media 

users who possess domain expertise (e.g., photography) and 

incentivize them to perform some tasks (e.g., take quality 

pictures). They propose a framework that extracts the potential 

contributors’ expertise based on their social media activity (e.g., 

Flickr
5
). [38] estimates worker skills by their visiting frequency 

to the task locations. 

C. Group Recommendation and Collaboration 

Complex SC tasks often need to be collaboratively 

completed by a team of workers. Therefore, it becomes 

important to recommend teams of workers to complex tasks. 

1) Group Recommendation 

[80, 81] study the top-k team recommendation problem in SC 

task allocation. The k cheapest teams that satisfy both the 

spatial constraints and the skill requirement of tasks will be 

recommended. [82] studies the formation of a group of experts 

to undertake a task that requires expertise in one or more 

domains. 

2) Collaboration among Workers 

Central to any group-based crowdsensing tasks is the aspect 

of successful collaboration among workers. Though there have 

 
4 http://www.freebase.com/ 
5 http://www.flickr.com/ 
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been preliminary studies on group recommendation in SC task 

allocation, the collaboration among workers are often neglected 

[83]. [84, 85] investigate the notion of collaboration among 

workers and identify two key factors that entail successful 

collaboration, namely, worker-worker affinity and upper 

critical mass. The former represents the “comfort-level” of 

workers who work together on the same task; groups with low 

affinity often suffer from low productivity. The latter comes 

from organizational science and social theories, and is a 

constraint on the size of groups, beyond which the 

collaboration effectiveness diminishes. They also propose 

approximation or comprehensive models for collaborative 

crowdsourcing optimization. [86] models each worker as a 

selfish entity, and workers prefer to join the profitable teams 

where they can gain high revenue. They propose a collaborative 

group formation approach that allows group members to form a 

connected graph such that they can work together efficiently. 

3) Collaboration with Online Communities 

With the rapid development of Internet services and smart 

devices, people now work in both online and offline 

communities. The two types of communities are interlinked and 

have complementary information. It is thus important to link 

them and investigate the collaboration with online communities 

in spatial crowdsourcing [87, 88, 89]. There have recently been 

several studies towards this direction. For example, MoboQ [90] 

is a location-based question answering service that assigns 

spatial queries to social media (e.g., Sina Weibo
6
) users based 

on their online check-ins or the local intimacy learned from 

their posts. Similarly, [91] studies the effectiveness of 

employing location-based services (e.g., Foursquare
7

) for 

finding appropriate people to answer location-based queries. 

[92] presents a feature-based model to learn users’ preferences 

on question answering from their tweets and social connections. 

Expert finding is crucial to address location-based query tasks 

[93]. [94] formulates a top-k local user search problem from the 

tweets with geo-tags. It finds the top-k users who have posted 

tweets relevant to the desired keywords within a given query 

area. 

D. Task Composition and Decomposition 

Existing SC task allocation mechanisms mainly focus on 

independent tasks, while the correlations among them are 

omitted. In urban environments, though the spatial tasks are 

published by different requesters, they can be relevant from 

different aspects (e.g., spatial proximity, topic similarity). Thus, 

to improve system performance, sometimes they should be 

composed and completed together. On the other hand, some 

spatial tasks can be of high complexity and in such situations 

tasks should be decomposed into subtasks before being 

allocated to enhance efficiency.  

1) Task Composition 

It refers to the allocation of a sequence of tasks to a worker 

according to spatial properties and the association among tasks. 

[21] studies the multi-task allocation problem. They compose 

proximate micro tasks and assign them by groups to workers to 

maximize task throughput. Similarly, [95] optimally clusters 

tasks and recommends it to workers, to meet both worker’s 

 
6 http://weibo.com/ 
7 http://www.foursquare.com/ 

expected wage and qualifications. [96] investigates the effect of 

task bundling, where workers must perform all tasks in a set to 

obtain payment. The results indicate that workers prefer 

bundled tasks, and bundled tasks have an average completion 

rate that is 20% higher than atomic tasks. Deng et al. [97] 

formulate task composition as a scheduling problem to 

maximize the number of completed tasks by each selected 

worker. 

2) Multi-task Partitioning 

To speed up task allocation when there is a large number of 

tasks, we need to divide the global allocation process into a set 

of local allocations. For example, to improve computation 

efficiency, [98] devises a bisection-based method which 

partitions tasks according to the spatial associations among 

them. Cheng et al. [77] propose the divide-and-conquer task 

partitioning heuristic to improve task allocation efficiency. [99] 

formulates task allocation as a weighted bipartite graph 

matching problem, and then uses a partitioning method to 

construct independent bipartite graphs and allocates tasks in 

parallel. 

3) Complex Task Decomposition 

To facilitate the completion of a complex task, we can split it 

into simple subtasks which can be processed individually [100]. 

The sub-task results will be combined to get the final output. 

[101] studies different methods for task decomposition, 

including the sequential implementation, the parallel 

implementation, and the divide and conquer implementation. 

Visual crowdsensing tasks [102], such as event sensing and 

landmark profiling, are sometimes complex as we may need 

pictures with spatial and temporal diversity to have a 

comprehensive picture of the sensing target. Regarding this, 

visual crowdsensing tasks can be decomposed and regrouped in 

task allocation. For example, a building profiling task which 

requests pictures about a building from different shooting 

directions can be split into several sub-tasks (e.g., taking 

pictures of the building from different directions). The 

sub-tasks about different buildings can be regrouped based on 

their spatial proximity. 

E. Privacy-Preserving Task Allocation 

A major concern of SC systems is the location privacy of 

participants. SC tasks are usually assigned to workers based on 

location proximity. Therefore, the location of workers should 

be used in task allocation. Disclosing human locations has 

serious privacy implications, and people may not accept SC 

tasks if their private information is exposed. However, the 

privacy issue has rarely been considered in existing SC task 

allocation algorithms. 

Spatial cloaking is an often-used approach that allows 

participants to obfuscate their locations, as demonstrated in 

[26]. Differential privacy (DP) [103] has strong protection 

guarantees rooted in statistical analysis. Several works are 

based on this, which allows participants to obfuscate their 

reported locations under the guarantee of differential privacy 

[104, 105]. To protect user privacy, TaskMe [21] allows 

participants to register region-level interested areas while not 

precise locations for task assignment. 

Besides location privacy, Li et al. [106] find that bids in the 

auctions are temporally and spatially correlated. Therefore, 

individual private information may be also inferred when 



 10 

disclosing the bids. They design a privacy-preserving task 

allocation method that uses Lagrange polynomial interpolation 

to perturb workers’ bids within groups. [107] is a toolbox for 

interactive visualization and tuning of SC private task 

assignment methods, allowing us to understand the relationship 

between data privacy and budget setting. 

F. Incentive mechanism 

Incentive is crucial to the success of SC system because it 

depends on the crowd to perform a lot of tasks. Note that 

incentive mechanism is one of essential parts in task allocation, 

and it can significantly affect the quality of data contributed by 

workers, which is the main optimization objective in task 

allocation of SC [108].  

There have been a lot of works that study the incentive 

mechanisms in SC, which can be categorized into two major 

types: monetary and gamification. The prior one provides 

workers monetary rewards, while the latter one attracts them 

with fun. Since workers need to consume substantial efforts and 

physical resources for SC tasks, monetary-based incentive 

mechanisms are widely used in the study of SC. MobiBee [109] 

is a mobile participatory game to collect fingerprints, and 

several incentives for participants are presented to motivate the 

crowd to contribute data, including financial rewards and 

gamification elements such as scoring system, ranking, group 

tasks and time pressure. The Reverse Auction (RA) [110] 

method is a widely used method for monetary incentives in SC, 

and it allows people to sell their data based on their wills and 

decide the payment of each worker by sealed-bidding. However, 

RA may result in heterogeneous payments to workers. 

Therefore, a more applicable method is posted pricing [111], 

where the unique price is announced by task requesters. Most 

existing commercial crowdsourcing systems (e.g., Amazon 

Mechanical Turk) adopt the posted pricing approach to attract 

user participation.   

In addition to user participation, there are several other 

important factors that should be considered in designing 

incentive mechanisms, including quality of sensing [112,113], 

truthfulness of workers [114], cost budget [22], and so on. Note 

that most workers in SC are unprofessional, thus, the incentive 

mechanism should have the ability to ensure the truthfulness of 

workers and attract more workers of high reputation. [115] 

presents an incentive mechanism that promotes truthful 

reporting in crowdsourcing. [116] presents the reputation-based 

winner selection scheme and incentive mechanism to select 

workers for high-quality data contribution, which can ensure 

truthfulness of workers and enhance data quality. Theseus [117] 

is a payment mechanism that incentivizes high-effort sensing 

from workers, and a truth discovery algorithm is used to ensure 

high aggregation accuracy in MCS systems. [118] presents a 

truthful incentive mechanism for crowdsourcing in terms of 

several desirable economic properties: individual rationality, 

budget-balance, computational efficiency, and truthfulness.   

In general, quality of sensing and payment to workers are 

two main factors in SC task allocation, and lower payment to 

workers may result in poorer data quality. At present, there 

have been several studies that aim to make a balance between 

the incentive cost and sensing quality in crowdsourcing 

systems. [119] presents a novel Bayesian pricing problem, and 

the aim of the problem is to choose an appropriate posted price 

and recruit a set of participants with reasonable sensing 

qualities to achieve sensing robustness in crowdsensing. 

TaskMe [120] is a novel MCS incentive mechanism, and an 

LBSN-powered model is leveraged for dynamic budgeting and 

proper worker selection. Moreover, a combination of 

multi-facet quality measurements and a multi-payment 

enhanced reverse auction scheme are proposed to improve 

sensing quality. Taking consideration of data quality, 

crowd-sensing cost, and uncertainty in offer outcomes, [121] 

designs a pricing mechanism that first fixes the pricing rule, and 

then selects users based on Unconstrained Submodular 

Maximization (USM). [122] proposes a constant-competitive 

incentive compatible mechanism, including two main 

objectives: maximizing the number of tasks performed under 

budget, and minimizing payments for a given number of tasks.  

V. REAL-WORLD DEPLOYMENT AND EVALUATION 

This section discusses the practical issues on real-world 

deployment as well as the challenges encountered for a 

large-scale user study in SC task allocation. 

A. Spatial Crowdsourcing in the Wild 

When deploying spatial crowdsourcing platforms in practice, 

various issues have to be addressed properly, in addition to the 

privacy concerns and energy costs discussed above. 

1) Human Participation 

Existing work generally assumes that no rejection would 

occur after task allocation has been performed by the server. 

However, human participation should be considered a factor in 

practice. Workers may omit an assigned task due to the lack of 

time or the difficulty of the task. Therefore, how to match the 

right workers with the right tasks in order to maximize their 

acceptance rate is of great importance. One possible method is 

to map the human interests with the tasks during the worker 

selection process. For example, [123] proposes a model to 

measure the probability of interests for each worker-task pair, 

with an aim to maximize the workers’ acceptance rate. 

2) Load Balancing 

As a large-scale distributed system, load balance is crucial 

for improving the system throughput. In SC, load balancing 

attempts to improve in task workload distribution across 

multiple participants, with an aim to minimize the task 

completion time, optimize resource use, and maintain 

long-term human participation. Not much work has addressed 

this issue. [124] explores the maximization of the aggregated 

data utilities of heterogeneous sensing tasks in task allocation, 

also considering the allocation of sensing task workloads 

among the selected workers. 

3) Uncertainty and Reliability 

Human behaviors are hard to predict and may introduce 

various uncertainties to the crowdsourcing systems [125]. In 

unintentional movement-based task allocation, we allocate 

tasks based on the workers’ movement prediction by means of 

historical trajectories. However, it will introduce uncertainties 

as some workers may not take the same routes every day (e.g., 

due to interruptions in the business or the physical contexts). 

Also, the workers’ preference or interest may evolve over time. 

The reliability of the SC system may also be affected by 

human-in-the-loop. For example, it is possible that workers can 
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dynamically join or leave the SC system, which can impact the 

performance of task completion. To address this, [77] designs a 

grid index method that enables the dynamic update of 

workers/tasks to ensure system reliability. 

B. Task Allocation in Existing SC Platforms 

After presenting the task allocation challenges and solutions 

offered by the research community, this section will study the 

state of the art of task allocation in existing SC platforms. 

Popular crowdsourcing systems, such as Amazon 

Mechanical Turk (AMT) [126], for performing paid tasks, and 

CrowdFlower
8
, for collecting, cleaning, and labeling existing 

datasets are available in the market. Recently, with the 

development of spatial crowdsourcing, a number of SC 

platforms have emerged. They can be broadly categorized into 

the following types. 

 General purpose: gMission [12], McSense [38], 

TaskRabbit
9
, and PRISM [127] are general-purposed 

SC platforms which support a variety of location-based 

tasks. 

 Data-driven skill learning: Gigwalk
10

, EasyShift
11

, and 

Twentify
12

 are business-oriented SC platforms, which 

enable companies to mobilize on-demand smartphone 

users to collect data of retails about product 

performance, providing valuable insights and 

empowering better business decisions.  

 Dedicated use: There are other SC platforms that 

provide dedicated applications, such as Postmates
13

 for 

object delivery, MoboQ [90] for location-based query 

& answering, Weddar
14

 for fine-grained weather 

information, Waze
15

 for real-time traffic and road 

information sharing, and SeeClickFix
16

 for local urban 

facility reporting. 

These SC platforms and associated task allocation methods 

are summarized in Table I. Most existing platforms are based 

on simple task assignment schemes, i.e., location matching 

between task request and workers. gMission and PRISM 

allocates tasks based on worker location. Quite a few of them 

have considered users’ experience/skills. For example, MoboQ 

assigns tasks by ranking workers in terms of locations, 

expertise, and availabilities; TaskRabbit considers 

user-specified skills in worker selection.  

Other factors that should be taken into account in SC 

platform development include: data quality measurement, 

privacy-preserved task assignment, etc. In existing platforms, 

user skills are mostly based on human-inputs. To reduce 

man-made errors, data-mining methods can be considered to 

complement human participation. Furthermore, most platforms 

have focused on simple tasks; optimizations based on task 

decomposition to account for more complex problems should 

be considered. The load-balancing problem has only been 

considered in gMission. To tackle the issue of rejecting 

 
8 http://www.crowdflower.com/ 
9 www.taskrabbit.com/ 
10 http://www.gigwalk.com/ 
11 http://easyshiftapp.com/ 
12 http://www.twentify.com/ 
13 https://postmates.com/ 
14 http://www.weddar.com/ 
15 http://www.waze.com/ 
16 https://seeclickfix.com/ 

response, a simple strategy can be employed by assigning a task 

to more candidates in the neighborhood. Besides, a response 

deadline can often be attached when assigning a task to a 

participant. However, further selection schemes can be 

considered by incorporating factors such as user availability 

and interest.  

C. Large-scale User Study 

Early experimental studies on SC task allocation are mainly 

based on simulations, where the distribution of workers and 

tasks are generated based on certain models or assumptions. 

However, as human-in-the-loop systems, it is crucial to make 

experiment design closer to the real-world settings, whereas the 

challenge is that the recruitment of large-scale participants for 

real-world SC experiments is considerably high. As such, 

recent works on SC task allocation are mostly evaluated using 

synthetic datasets, i.e., integrating simulation datasets with 

real-life datasets to mimic the real-world environment. For 

example, Gowalla
17

 and Brightkite
18

 are two LBSNs, and we 

can consider LBSN users as workers, and their check-in places 

as task locations under evaluations. A summary of the datasets 

used for synthetic studies are outlined in Table II. 

There are additional factors not easily simulated using 

employed datasets, such as workers’ preference on different 

kinds of tasks, user-skills for performing tasks, users’ task 

 
17 http://gowalla.com/ 
18 http://brightkite.com/ 

TABLE I 
Existing Spatial Crowdsourcing Platforms 

Name Description Task allocation 

gMission 

[12] 

 

General purpose 
Location-based, 

reputation-based, load 

balancing, single task 
 

McSense 

[38] 

 

General purpose 

 User profiling 

(processing power, 

battery-level, location) 
and worker ranking 

PRISM [127] General purpose Location-based,  

single task 

TaskRabbit9 General purpose Skill and location-based 
task recommendation 

Gigwalk10 Business: collect data of 

business performance in stores 
Location-based search 

and recommendation 
 

EasyShift11 
Business: take photos of 

products, check prices, and 

review promotions. 

Location-based search 

and recommendation 

 
 

Twentify12 

Business: enable companies to 
mobilize an on demand 

workforce of smartphone users 

to collect data; provide 
valuable insights and empower 

better business decisions. 

 
 

Location-based search 

and recommendation 

 
Weddar14 

Weather information, invite 
people to report on how they 

feel about the weather 

 
Self-report 

SeeClickFix
16 

Allow people to report 

non-emergency neighborhood 
issues to the local governments. 

 

Self-report 

 

Waze15 
  Share real-time traffic and   

road information on their 
 daily travels. 

 

Self-report 

Postmates13 On-demand local 

 goods/food deliveries 
Location-based tasks 

 

MoboQ [90] 

 

Location-based Q&A 

Ranking (current 
location, location 

expertise, and 

availability) 

 

 



 12 

performance reputations, etc. These, however, can only be 

characterized by conducting real-world user studies. Regarding 

its difficulty and high cost in organization and control, there are 

few studies that focus on real-world experiments on SC. Tasker 

[96] conducts a real-world user study in the SMU campus to 

examine the impacts of novel crowdsensing strategies. Over a 

two-month deployment, 30,000 tasks were performed by 900 

real users. In the study conducted by FlierMeet [23], 38 

recruited workers contributed more than two thousand photos 

during a period of two months for evaluating the crowdsourced 

data understanding methods. MoboQ [90] is an SC-based query 

answering system. During its ten-month deployment in China, 

15,224 location-based query tasks performed by 35,214 

registered users were proposed, with a total of 29,491 answers 

being collected. [77] tests their approach on a real MCS 

platform, namely, gMission [12]. gMission is an SC-based 

query answering application. Each worker in gMission is 

associated with his/her location and the available skills. [81] 

also leverage a real-world dataset collected from gMission. The 

dataset covers information of 11,205 workers, and each worker 

has an average of 5 skills. In [38], 44 university participants 

were recruited to collect data using the McSense mobile app, 

where several interesting findings about user participation are 

obtained. For example, users prefer automatic tasks (e.g., 

collecting location traces for a day) to manual tasks (e.g., taking 

a photo for a landmark). Though there have been several user 

studies about SC in the real-world setting, most systems/apps 

developed are dedicated and quite few of them uses a general 

platform (e.g., gMission) for task publishing and worker 

recruitment, as the usage of AMT in traditional crowdsourcing 

research. It indicates that the existing SC platforms are still at 

the early stage of development and they should be enhanced to 

meet different experiments and usage purposes [137]. 

VI. CONCLUSIONS 

This paper has reviewed the current state and present future 

directions of task allocation in SC. First, we present the concept 

models of tasks, workers, and the server, which are widely used 

in the development process of SC. A generic framework of SC 

task allocation is described to select the optimal set of 

participants for completing spatial tasks, which includes task 

publishing, task allocating and task performing. Second, we 

summarize the current SC literature, and present the key 

challenges and techniques of task allocation. Particularly, this 

paper reviews four important task allocation studies: single task 

allocation, multiple task allocation, low-cost task allocation and 

quality-enhanced task allocation. Third, we investigate the 

future trends and open issues of SC task allocation in the 

following aspects: the new forms of SC tasks (e.g. object 

delivery and object tracking), skill-based task allocation, group 

recommendation and collaboration, task composition and 

decomposition, and privacy-preserving task allocation. Finally, 

we discuss the practical issues on real-world deployment, such 

as human participation and load balancing. The challenges 

encountered by large-scale user study in SC task allocation are 

also outlined. 
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